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Abstract

General features of the spectra of matter states in all 175 models found in a previous work by

the author are discussed. Only twenty patterns of representations are found to occur. Accomo-

dation of the Minimal Supersymmetric Standard Model (MSSM) spectrum is addressed. States

beyond those contained in the MSSM and nonstandard hypercharge normalization are shown to

be generic, though some models do allow for the usual hypercharge normalization found in SU(5)

embeddings of the Standard Model gauge group. The minimum value of the hypercharge normal-

ization consistent with accommodation of the MSSM is determined for each model. In some cases,

the normalization can be smaller than that corresponding to an SU(5) embedding of the Standard

Model gauge group, similar to what has been found in free fermionic models. Bizzare hypercharges

typically occur for exotic states, allowing for matter which does not occur in the decomposition of

SU(5) representations|a result which has been noted many times before in four-dimensional string

models. Only one of the twenty patterns of representations, comprising seven of the 175 models,

is found to be without an anomalous U(1). The sizes of nonvanishing vacuum expectation values

induced by the anomalous U(1) are studied. It is found that large radius moduli stabilization may

lead to the breakdown of �-model perturbativity. Various quantities of interest in e�ective super-

gravity model building are tabulated for the set of 175 models. In particular, it is found that string

moduli masses appear to be generically quite near the gravitino mass. String scale gauge coupling

uni�cation is shown to be possible, albeit contrived, in an example model. The intermediate scales

of exotic particles are estimated and the degree of �ne-tuning is studied.

� E-Mail: JTGiedt@lbl.gov

1This work was supported in part by the Director, OÆce of Science, OÆce of High Energy and Nuclear Physics,

Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and in part

by the National Science Foundation under grant PHY-95-14797.



Disclaimer

This document was prepared as an account of work sponsored by the United States Government. Neither the

United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference herein to any speci�c commercial products

process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof,

or The Regents of the University of California. The views and opinions of authors expressed herein do not

necessarily state or reect those of the United States Government or any agency thereof of The Regents of the

University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.

ii



1 Introduction

Since its introduction, the heterotic string [1] has o�ered the possibility that it may provide a

unifying description of all fundamental interactions. However, the theory as originally formulated

has a ten-dimensional space-time. To construct a four-dimensional theory, one typically associates

six of the spatial dimensions of the original theory with a very small compact space. One route

to \compactifying" the six extra dimensions, which has been the subject of intense research for

several years now, is to take the six-dimensional space to be an orbifold [2, 3].

Four-dimensional heterotic string theories obtained by orbifold compacti�cation take two broad

paths to the treatment of internal string degrees of freedom not associated with four-dimensional

space-time. On the one hand, these degrees of freedom are associated with two-dimensional free

fermionic �elds [4]; on the other, some are associated with two-dimensional bosonic �elds propa-

gating in a constant background.

Remarkable progress in the construction of realistic four-dimensional free fermionic heterotic

string models [5] has been made in the last several years: a high standard has been established

recently by Cleaver, Faraggi, Nanopoulos and Walker in their construction and analysis [6] of a

Minimal Superstring Standard Model based on the free fermionic model of Ref. [7]. The Minimal

Superstring Standard Model has only the matter content of the Minimal Supersymmetric Model1

(MSSM) at scales signi�cantly below the string scale �H � 1017 GeV. Furthermore, the hypercharge

normalization (discussed in detail below) is conventional.

Similarly realistic four-dimensional bosonic heterotic string models have not yet been engineered,

though the foundations of such an e�ort were laid some time ago [2, 3, 9, 10]. Some of the most

promising models were of the Z3 orbifold variety, with nonvanishingWilson lines (discussed below)

chosen such that the matter spectrum naturally had three generations. One such model was

introduced by Ib�a~nez, Kim, Nilles and Quevedo in Ref. [11], which we will refer to as the Bosonic

Standard-Like-I (BSL-I) model. The model was subsequently studied in great detail by two groups:

Ib�a~nez, Nilles, Quevedo et al. in Refs. [12, 13]; Casas and Mu~noz in Refs. [14]. As is often the case

in supersymmetric models, the vacuum in the BSL-I model is not unique; di�erent choices lead to

di�erent low energy e�ective theories. A particularly encouraging vacuum was the one chosen by

Font, Ib�a~nez, Quevedo and Sierra (FIQS) in Section 4.2 of Ref. [13]; in what follows, we will refer

to this e�ective string-derived theory as the FIQS model. Departures from realism in the FIQS

model were pointed out recently in [15] and [16]. In the latter article, we suggested that a scan

over three generation constructions analogous to the BSL-I model be conducted, in the search for a

more realistic model. Ultimately, we would like to attempt models comparable to the free fermionic

Minimal Superstring Standard Model. Part of the purpose of this paper is to report some of our

progress toward this goal.

This article is devoted to a model dependent study of bosonic standard-like Z3 orbifolds. Model

independent analyses are appealing because they paint a wide swath and highlight general pre-

dictions of a class of theories. Too often, however, one is left wondering whether the limiting

assumptions made in such analyses really reect the properties of some class of explicit, consistent

underlying theories. At some point it is necessary to get dirt on oneself and investigate whether

or not the broad assumptions made in model independent analyses are ever valid. This is one

1For a review of the MSSM, see for example Refs. [8].
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of the motivations for model dependent studies such as the one contained here. Another reason

to study explicit string constructions is that certain peculiarities are more readily apparent under

close examination. One well-known example, which will be discussed in detail below, is the generic

presence of exotic states with hypercharges which do not occur in typical Grand Uni�ed Theories2

(GUTs).

One objection to model dependent studies in four-dimensional string theories is that the number

of possible constructions is enormous. However, in at least one respect the hugeness is not as great

as it would appear. Already in the second of the two seminal papers by Dixon, Harvey, Vafa and

Witten, it was realized that many \di�erent" orbifold models are in fact equivalent [3]. Casas,

Mondragon and Mu~noz (CMM) have shown in detail how equivalence relations among orbifold

compacti�cations can be used to greatly reduce the number of embeddings (in the present context,

a set fV; a1; a3; a5g of sixteen-dimensional vectors) which must be studied in order to produce all

physically distinct models within a given class of constructions [20]. In particular, they applied

these techniques to a special class of bosonic standard-like heterotic string models; for convenience,

we will refer to this as the BSLA class. For completeness, we give its technical de�nition below.

The meanings of the terms used here will be made clear in Section 2, as much as is required to

follow the discussion in the remainder of this article. For further details, the interested reader is

encouraged to consult the various reviews [21, 22], texts [23], and references therein. In simpler

terms, the de�nition given here implies that we follow the construction outlined in [9], with three

generations by the method suggested in [11], subject to additional restrictions imposed by CMM

(items (iii) and (iv) below).

De�nition 1 The BSLA class consists of all bosonic E8 � E8 heterotic Z3 orbifold models with

the following properties:

(i) symmetric treatment of left- and right-movers and a shift embedding V of the twist operator

�;

(ii) two nonvanishing Wilson lines a1; a3 and one vanishing Wilson line a5 = 0;

(iii) observable sector gauge group

GO = SU(3)� SU(2) � U(1)5; (1.1)

(iv) a quark doublet representation (3; 2) in the untwisted sector.

CMM found that models satisfying (i-iv) may be described (in part) by one of just nine observable

sector embeddings; here, \observable" refers to the �rst eight entries of each of the nonvanishing

embedding vectors, V; a1; a3; it is this which determines properties (iii) and (iv) listed above. In

a previous article [24], we showed that these nine observable sector embeddings are equivalent to

a smaller set of six embeddings. To fully specify a model, the observable sector embedding must

be completed with a hidden sector embedding|the last eight entries of each of the nonvanishing

embedding vectors, V; a1; a3. In Ref. [24] we enumerated all possible ways to complete the embed-

dings in the hidden sector, using equivalence relations to reduce this set to a \mere" 192 models.

Surprisingly, only �ve hidden sector gauge groups GH were found to be possible. These possibilities

are shown in Table I.
2For a review of non-supersymmetric GUTs see Refs. [17, 18] and for supersymmetric extensions see Refs. [19].
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Case GH

1 SO(10) � U(1)3

2 SU(5) � SU(2)� U(1)3

3 SU(4)� SU(2)2 � U(1)3

4 SU(3)� SU(2)2 � U(1)4

5 SU(2)2 � U(1)6

Table I: Allowed hidden sector gauge groups GH .

The Z3 orbifold models studied here have N = 1 local supersymmetry (supergravity) at the

string scale. In our analysis, we assume that this supersymmetry is broken dynamically via gaugino

condensation of an asymptotically free condensing group GC in the hidden sector. That is, the

vacuum expectation value (vev) of the gaugino bilinear h��i acquires a nonvanishing value. This

operator has mass dimension three; we therefore de�ne the dynamically generated condensation

scale �C by

h��i = �3
C : (1.2)

To estimate the value of �C , consider the one loop evolution of the running gauge coupling gC(�)

of GC :
dgC

d ln�
= �(gC) =

bCg
3
C

16�2
: (1.3)

The � function coeÆcient bC is given by

bC = �3C(GC) +
X
R

XC(R): (1.4)

Here, C(GC) is the eigenvalue of the quadratic Casimir operator for the adjoint representation of the

group GC while XC(R) is the Dynkin index for the representation R, given by trR (T
a)2 = XC(R)

in a Cartesian basis for the generators T a; we adhere to a normalization where XC = 1=2 for

an SU(N) fundamental representation. The sum runs over chiral supermultiplet representations.

Provided bC is negative, the coupling turns strong at low energies and the dynamical scale �C is

generated, in analogy to �QCD. The running of gauge couplings from an initial uni�ed value gH � 1

at a uni�cation scale, which in our case is the string scale �H � 1017 GeV, gives

�C � �H exp(8�2=bCg
2
H); (1.5)

where we have identi�ed �C with the Laundau pole of the running coupling.

Soft mass terms in the low energy e�ective lagrangian split the masses of supersymmetry multi-

plets, and thereby break supersymmetry; partners to Standard Model (SM) particles are generically

heavier by the soft mass scale MSUSY. The soft terms arise from nonrenormalizable interactions in

the supergravity lagrangian, with masses proportional to the gaugino condensate h��i, suppressed
by inverse powers of the (reduced) Planck mass, mP � 1=

p
8�G = 2:44�1018 GeV. On dimensional

grounds, one expects that the observable sector supersymmetry breaking scale MSUSY is given by

MSUSY � � � h��i=m2
P = � � �3

C=m
2
P ; (1.6)
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with (naively) � � O(1). For supersymmetry to protect the gauge hierarchy mZ � mP between

the electroweak scale and the fundamental scale, one requires, say, MSUSY
<� 10 TeV. Then (1.6)

with � � O(1) implies �C <� 4� 1013 GeV. On the other hand, direct search limits [25] on charged

superpartners require, say, MSUSY
>� 50 GeV, which translates into �C >� 7 � 1012 GeV. More

precise results may be obtained, for instance, with the detailed supersymmetry breaking models of

Bin�etruy, Gaillard and Wu (BGW) [26] as well as subsequent ellaborations by Gaillard and Nelson

[27]. These calculations con�rm the naive expectation (1.6), except that

O(10�2) <� � <� O(10�1); (1.7)

which tends to increase �C . For example, the lower bound implied by MSUSY
>� 50 GeV changes to

�C >� 9� 1012 GeV if � � 0:4, near the upper end of the range (1.7). The result is that

O(1013) <�
�C
GeV

<� O(1014) (1.8)

is a reasonably �rm estimate.

For GC = SU(2) with no matter, one has bC = �6. Substituting into (1.5), one �nds �C � 1011

GeV. On the other hand, (1.5) is a crude estimate; studies of the BGW e�ective theory show that

the naive estimate (1.5) can receive signi�cant corrections due to a variety of e�ects, and deviations

by an order of magnitude are certainly possible. Thus, a more reliable bound is �C <� 1012 GeV.

Since bC > �6 when GC charged matter is present, the limit �C <� 1012 GeV is saturated by the

case with no matter. In the models considered here, as will be seen below, SU(2) groups always

have many, many matter representations, and it is unlikely that all of them would acquire e�ective

mass couplings at the uni�cation scale �H so that bC = �6 and �C � 1012 GeV could be achieved.

In any case, 1012 GeV is below the lower bound in (1.8), set by MSUSY
>� 50 GeV, the �rmer of the

soft scale requirements, so having bC = �6 is marginal at best. Case 5 of Table I was therefore

considered to be an unviable hidden sector gauge group. Certainly, Cases 1 to 4 appear more

promising. Eliminating the models with the Case 5 gauge group, only 175 models remain. The

matter spectra of these models are the topic of discussion for the present paper.

Quite commonly in the models considered here, some of the U(1) factors contained in the gauge

group G = GO �GH are apparently anomalous: tr Qa 6= 0. Rede�nitions of the charge generators

allow one to isolate this anomaly such that only one U(1) has an apparent trace anomaly. We denote

this factor of G as U(1)X . The associated anomaly is canceled by the Green-Schwarz mechanism

[28]: tree level couplings between the U(1)X vector multiplet and the two-form �eld strength (dual

to the universal axion) are added to the e�ective action in such a way that the one loop U(1)X
anomaly is canceled [29]; the U(1)X only appears to be anomalous. When the cancellation is done

in a supersymmetric fashion, a Fayet-Illiopoulos (FI) term � for U(1)X is induced; we have, for

example, described this e�ect at the e�ective supergravity level in the Appendix of [16]. The result

of these considerations is an e�ective D-term for U(1)X of the form:

DX =
X
i

@K

@�i
q̂Xi �

i + �; � =
g2H tr Q̂X

192�2
m2
P : (1.9)

The U(1)X generator Q̂X has a normalization consistent with uni�cation (discussed further below),

q̂Xi is the charge of the scalar �i with respect to Q̂X , K is the K�ahler potential and and gH is the
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uni�ed coupling mentioned above. Since the scalar potential of the e�ective supergravity theory

at the string scale �H contains the term g2HD
2
X=2, some scalar �elds generically shift to cancel the

FI term (i.e., hDXi = 0 to leading order) and get vevs of order
pj�j. Adopting the terminology of

[16], we will refer to these as Xiggs �elds, since they are associated with the breaking of U(1)X (and

typically other factors of G) via the Higgs mechanism. Generally, the way in which the FI term may

be canceled is not unique and continuously connected vacua result. Pseudo-Goldstone modes, D-

moduli [15], parameterize the at directions; dynamical supersymmetry breaking and loop e�ects

are required to select the true vacuum and render these scalar �elds massive [15, 30]. (Moduli

parameterizing at directions of the scalar potential are a generic feature of supersymmetric �eld

theories [31]. An example of D-moduli was noted previously in the study of D-at directions in

[14], parameterized there by the quantity \�," which interpolated between various vacuua. Such

moduli have also been noted in the study of at directions in free fermionic string models, for

instance in Ref. [32].) The FI term � has mass dimension two and its square root therefore gives

the approximate scale of U(1)X breaking, which we hereafter denote

�X �
q
j�j =

q
j tr Q̂X j
4�
p
12

� gHmP : (1.10)

In the examples below we will �nd by explicit calculation of tr Q̂X in each of the 175 models that

�X � �H � 0:2mP .

In Section 2 we discuss the determination of the spectrum of massless states from the underlying

string theory. We discuss in careful detail how the gauge group G is determined. We then describe

in similar detail how one determines the irreducible representations (irreps) and U(1) charges of

matter states. In Section 3 we make observations on the general features of the 175 models, as

determined from the spectrum of massless states and their U(1) charges. We �nd that only 20

patterns of irreps occur in the 175 models. In Section 4, we delve into diÆculties associated with

the electroweak hypercharge. We explore the most natural de�nition of hypercharge: to embed it

into an SU(5) gauge group which also contains the SU(3) � SU(2) of the observable gauge group

GO. As a further condition, we require that the SU(5) is a subgroup of the observable E8 factor of

the \parent" E8�E8 theory. We �nd that none of the 175 models can accommodate the full MSSM

spectrum when this is done; although adequate SU(3)�SU(2) irreps are present, the hypercharge

quantum numbers are not correct for enough of the irreps. We will explain how the presence of

states with unusual hypercharge values corresponds to the phenomenon of charge fractionalization

in orbifolds. The absense of states with correct hypercharges for the SU(5) embedding leads us to

the less attractive alternative of engineering a hypercharge which is a general linear combination

of the several U(1)s contained in G and generators of the Cartan subalgebras of nonabelian factors

contained in the hidden gauge group GH . We �nd that this does allow for the accommodation of

the MSSM spectrum. At the same time, rather bizarre hypercharges for extra matter are found

to be generic, as well as nonstandard hypercharge normalization. In Section 5 we illustrate these

unconventional results with a detailed examination of one of the 175 models. We describe various

assignments of the MSSM to the spectrum of 153 chiral multiplets of matter states present in the

model, and the hypercharges and nonstandard hypercharge normalizations which occur. In spite of

nonstandard hypercharge normalization, it is found that successful uni�cation of gauge couplings

at the string scale �H � 1017 GeV is possible. However, the uni�cation scenario in this model
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is rather ugly, since it requires that exotic states with fractional electric charges be introduced at

intermediate scales|between the electroweak scale and the string scale. We suggest how one might

circumvent phenomenological diÆculties with fractionally charged states having intermediate scale

masses. In Section 6 we make concluding remarks and suggest directions for further research. In

Appendix A we review cancellation of the modular anomaly. In Appendix B we present our more

lengthy sets of tables.

Since each model contains 3�O(50) matter irreps and eight or nine independent U(1) generators,
it is for obvious reasons that we do not provide in full detail the spectra and charges of all 175 models.

However, upon request, complete tables of the matter spectra and U(1) charges are available from

the author.

2 Determination of Spectra

Several textbooks discussing heterotic orbifolds are available [23]. In addition, many reviews

have been written over the years [21], including the recent (and widely available) review by Bailin

and Love [22]. Rather than repeat lengthy discussions given elsewhere, we have chosen to avoid

many details of the underlying string theory and present a somewhat heuristic description. Our

intent is to provide just enough information to allow one to determine the spectrum of gauge and

matter states below the string scale, for the class of orbifold models considered here. To this end,

we provide a set of \recipes" for the spectrum determination at the close of this section. These

are designed as a tool for the \string novice" who merely wishes to study these models from a low

energy, phenomenological point of view.

To make contact with the world of particle physics, one is interested in the e�ective theory

produced by heterotic string theory at energy scales far below the string scale �H � 1017 GeV. The

�rst step in constructing such a theory is to determine the string states with masses much less than

�H . Secondly, one must derive the interactions between these states and an appropriate description

for these interactions. In the context of perturbative string theory, there exist systematic methods

for the accomplishment of these tasks, subject to certain technical diÆculties which we will not

discuss here, since for the most part we work only at leading order in string perturbation theory.

The perturbation series corresponds to string world-sheet (the two-dimensional surface swept out

by the string) diagrams of increasing complexity. These are labeled by the genus of the diagram,

starting at genus zero, often referred to as \tree level" in string theory. The next order, genus one,

is often referred to as the \one loop level" in string theory, because the world-sheet diagram is a

two-dimensional torus. Interactions are described by scattering amplitudes between string states.

In particular, these amplitudes can be studied in the limit where external momenta are taken to

be much less than the string scale, often referred to as the zero-slope limit [33]. One then matches

the results onto a �eld theory; that is, one constructs a local �eld theory lagrangian which, when

quantized, would have single particle states with the same properties (mass, spin, charge, etc.) as

the low-lying string states and scattering amplitudes which match the string scattering amplitudes

at low external momenta. Thus, one can talk about the \particle" states which arise from the \�eld

theory limit" of the string.

A study of the heterotic string at tree level shows that the string states are organized into a

tower of mass levels, with the lowest level of states massless. For the four-dimensional heterotic
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string, subject to certain quali�cations which will not trouble us here (e.g., the large radius limit of

the extra dimensions where massive string states can drop below �H), the only string states with

masses signi�cantly below �H are those which lie at the massless level of the string. However, genus

one corrections can be signi�cant if, for example, an anomalous U(1)X is present. On the e�ective

�eld theory side, this correction is represented by the FI term which is induced from cancellation

of the U(1)X anomaly. The tree level spectrum of masses can be dramatically altered. For this

reason, we hereafter refer to the states which are massless at tree level as pseudo-massless. Many

of the pseudo-massless states have masses near �H once the one loop corrections are accounted

for! This is because the Xiggses acquire O(�X) vevs; explicit calculations detailed below show

that �H=1:73 � �X � �H in the 175 models studied here, indicating that �X is more or less the

string scale �H . The Xiggs vevs cause several chiral (matter) super�elds to get e�ective \vector"

superpotential couplings

W 3 1

mn�1
P

h�1 � � ��niAAc: (2.1)

Here, A and Ac are conjugate with respect to the gauge group which survives after spontaneous

symmetry breaking caused by the U(1)X FI term. The right-hand side of (2.1) is an e�ective

supersymmetric mass term, which generally results in masses

meff � O(�nX=mn�1
P ) � O(�nH=mn�1

P ): (2.2)

With n = 1 in (2.2), the e�ective masses are near the string scale. Due to the numerous gauge

symmetries present in the models considered here, as well as discrete symmetries known as orbifold

selection rules (see for example [34, 13, 22]), not all operators of the form AAc will have couplings

with n = 1 in (2.1). Because of this, a hierarchy of mass scales is a general prediction of models

with a U(1)X factor (all but seven of the 175 models studied here). We return to this point in

Section 5, where we briey discuss gauge coupling uni�cation.

By construction, the spectrum is that of an N = 1 four-dimensional locally supersymmetric

theory. Furthermore, the compact space is a six-dimensional Z3 orbifold (de�ned below). Certain

parts of the spectrum are well-known to be present by virtue of these facts alone [2]. We will not

discuss these states in this section except to note their existence: the supergravity multiplet, the

dilaton supermultiplet and nine chiral multiplets T ij whose scalar components correspond to the

K�ahler- or T-moduli of the compact space. (See for example [35] for a discussion of toric moduli.)

The remainder of the spectrum depends on the choice of embedding, and it is this part of

the spectrum which we must calculate separately for each of the 175 models. The embedding-

dependent spectrum consists of massless chiral multiplets of matter states and massless vector

multiplets of gauge states. Once the vacuum shifts to cancel the FI term, some gauge symmetries

are spontaneously broken and chiral matter multiplets (which are linear combinations of Xiggses)

get \eaten" by some of the vector multiplets to form massive vector multiplets. Examples of the

\degree of freedom balance sheet" may be found for example in [15].

2.1 The Z3 Orbifold

The six-dimensional Z3 orbifold may be constructed from a six-dimensional Euclidean space R6.

One de�nes basis vectors e1; : : : ; e6 satisfying

e2i = e2i+1 = 2R2
i ; ei � ei+1 = �1R2

i ; i = 1; 3; 5; (2.3)
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with a vector x 2 R6 having real-valued components:

x =
6X
i=1

xiei; xi 2 R 8 i = 1; : : : ; 6: (2.4)

Each of the three pairs ei; ei+1 (i = 1; 3; 5) de�ne a two-dimensional subspace which is referred to

below as the \ith complex plane." The ith such pair also de�nes a two-dimensional SU(3) root

lattice, obtained from the set of all linear combinations of the form niei + ni+1ei+1 with ni; ni+1
both integers. Taking together all six basis vectors e1; : : : ; e6, we obtain the SU(3)3 root lattice

�SU(3)3 , formed from all linear combinations of the basis vectors e1; : : : ; e6 with integer coeÆcients:

�SU(3)3 =

(
6X
i=1

`iei

����� `i 2 Z
)
: (2.5)

Note that the radii Ri in (2.3) are not �xed; neither are angles not appearing in (2.3), such as e1 �e3.
These free parameters determine the size and shape of the unit cell of the lattice �SU(3)3 , and are

encoded in the T-moduli T ij mentioned above. These moduli depend on the metric Gij = ei � ej
(i; j = 1; : : : ; 6) of the six-dimensional compact space, as well as an antisymmetric two-form Bij .

Of particular interest are the diagonal T-moduli T i � T ii. Up to normalization conventions on the

T i and Bij, the diagonal T-moduli are de�ned by

T i =
p
detG(i) + iBi;i+1; i = 1; 3; 5: (2.6)

Here, G(i) is the metric of the ith complex plane:

G(i) =

�
ei � ei ei � ei+1
ei+1 � ei ei+1 � ei+1

�
= R2

i

�
2 �1
�1 2

�
: (2.7)

Translations in R6 by elements of �SU(3)3 ,

x! x+ `; ` 2 �SU(3)3 ; 8 x 2 R6; (2.8)

form what is referred to as the lattice group. A rotation � in R6 is de�ned, with action on the basis

vectors:

� � ei = ei+1; � � ei+1 = �ei � ei+1; i = 1; 3; 5: (2.9)

Typically, � is referred to as the orbifold twist operator. It is easy to check that �3 = 1. The twist

operator � generates the orbifold point group,

Z3 = f1; �; �2g: (2.10)

It can be seen from (2.9) that the twist operator maps any element of �SU(3)3 into �SU(3)3 . Conse-

quently, we can de�ne the product group generated by the combined action of the point group and

the lattice group. This group is referred to as the space group S and a generic element is written

(!; `), with ! 2 Z3 and ` 2 �SU(3)3 . Acting on any element x 2 R6,

(!; `) � x = ! � x+ ` =
6X
i=1

[xi(! � ei) + `iei]; (2.11)
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where ! � ei can be obtained from (2.9). It is not hard to check the multiplication rule

(!; `) � (!0; `0) = (!!0; !`0 + `): (2.12)

The space group has four generators: (�; 0); (1; e1); (1; e3) and (1; e5). For example, using (2.9,2.12)

one can write

(1; e2) = (�; 0) � (1; e1) � (�; 0) � (�; 0): (2.13)

Certain points xf 2 R6 are �xed under the action of space group elements with ! = �:

(�; `) � xf = � � xf + ` = xf : (2.14)

It is not hard to solve this equation; one �nds that the �xed points are in one-to-one correspondence

with elements of �SU(3)3 :

xf (`) = (1� �)�1 � `: (2.15)

To de�ne the orbifold, denoted 
 = R6=S, one demands that points x; x0 2 R6 be treated as

equivalent if they are related to each other under the action of the space group S.

De�nition 2 The points x; x0 2 R6 are equivalent on the orbifold 
 = R6=S, notated x0 ' x, if

and only if there exists (!; `) 2 S such that x0 = (!; `) � x.

A space constructed in this way is often referred to as a quotient space, because we \divide out" by

the action of a discrete transformation group, in this case the space group S. It is worth noting that

quotient space constructions for extra dimensions were applied in a �eld theory context some years

prior to the construction of four-dimensional strings on orbifolds, with important consequences such

as chiral fermions [36].

On the orbifold, most of the �xed points (2.15) are equivalent to each other. There are only 27

inequivalent �xed points, which can be obtained from (2.15) using

`(n1; n3; n5) = n1e1 + n3e3 + n5e5; ni = 0;�1: (2.16)

Note the correspondence between this parameterization of the �xed points and the generators of

the space group which are elements of the lattice group: (1; e1); (1; e3) and (1; e5).

2.2 Boundary Conditions

At the classical level, the location of the string in the six-dimensional compact space is speci�ed

by a two parameter map Xcl(�; �) which has a component expression of the form (2.4):

Xcl(�; �) =
6X
i=1

Xi
cl(�; �) ei: (2.17)

The parameter � labels points along the string, with � ! �+� as one goes once around the string;

� labels proper time in the frame of the string. The heterotic theory is a theory of closed strings,

so Xcl(�; �) and Xcl(� + �; �) should be equivalent points on the orbifold. This requirement is

extended to the quantized theory Xcl(�; �) ! X(�; �), with X(�; �) a quantum operator. As a
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consequence of De�nition 2, X(�; �) need only be closed up to a space group element. For the

\(!; `) sector,"

X(� + �; �) = (!; `) �X(�; �): (2.18)

If we apply some other space group element (!0; `0) to (2.18), we �nd

(!0; `0) �X(� + �; �) =
h
(!0; `0) � (!; `) � (!0; `0)�1

i
� (!0; `0) �X(�; �): (2.19)

Because (!0; `0) �X(�; �) and X(�; �) are equivalent on the orbifold, the boundary condition

X(� + �; �) = (!0; `0) � (!; `) � (!0; `0)�1 �X(�; �) (2.20)

must be treated as equivalent to (2.18). That is, boundary conditions in the same conjugacy class

as (!; `), n
(!0; `0) � (!; `) � (!0; `0)�1

��� !0 2 Z3; `
0 2 �SU(3)3

o
; (2.21)

are equivalent because they are related to each other under the action of the space group [3]. There

are 27 such conjugacy classes associated with sectors twisted by �. There exists a correspondance

between each of these conjugacy classes and one of the 27 inequivalent �xed points of the Z3
orbifold. Since these sectors do not mix with each other under the action of the space group, we

regard them as 27 di�erent twisted sectors.

Nontrivial boundary conditions are typically extended to internal string degrees of freedom

	(�; �) not associated with the location of the string in the six-dimensional compact space. For

the (!; `) sector, which has (2.18), the extension may be written schematically as

	(� + �; �) = U [(!; `)] �	(�; �): (2.22)

Consistency requires this extension to be a homomorphism of the space group:

U [(!; `)] � U [(!0; `0)] ' U [(!; `) � (!0; `0)]; (2.23)

where \'" denotes equivalence, the precise meaning of which depends on the nature of 	(�; �). As

mentioned above, the space group has four generators; it is therefore suÆcient to specify the action

of U for these generators, since the homomorphism requirement then determines U for any other

element of the space group.

In particular, there exist sixteen internal bosonic degrees of freedom XI(�; �); I = 1; : : : ; 16;

these are employed in the construction of a current algebra which is the source of gauge symmetry

in the e�ective �eld theory. In the twisted sectors, the XI(�; �) are typically assigned nontriv-

ial boundary conditions according to a homomorphism U . As described above, we may de�ne U

through a map of the space group generators into the internal degrees of freedom. In the construc-

tion studied here, this consists of a set of shifts:

U [(�; 0)]IJ X
J(�; �) = XI(�; �) + �V I ;

U [(1; ei)]
I
J X

J(�; �) = XI(�; �) + �aIi ; 8 i = 1; 3; 5: (2.24)

The vector V is referred to as the shift embedding of the space group generator (�; 0); equivalently, V

embeds the twist operator �. Likewise, the vectors ai embed the other three space group generators
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(1; ei), i = 1; 3; 5 respectively. They are referred to as Wilson lines because of their interpretation

as background gauge �elds in the compact space. (It is worth noting that nontrivial gauge �eld

con�gurations in an extra-dimensional compact space were used by Hosotani in a �eld theory

context to achieve gauge symmetry breaking [37]; the nontrivial a1; a3 in the BSLA models represent

a \stringy" version of the Hosotani mechanism, allowing one to obtain standard-like G.)

Taking together the embeddings (2.24), and using the space group multiplication

(1; e1)
n1 � (1; e3)n3 � (1; e5)n5 � (�; 0) = (�; n1e1 + n3e3 + n5e5); (2.25)

the embedding of the twisted boundary condition (2.18) for each of the 27 twisted sectors corre-

sponding to (!; `) = (�; n1e1+n3e3+n5e5) is described by a sixteen-dimensional embedding vector

E(n1; n3; n5):

XI(� + �; �) = U [(�; n1e1 + n3e3 + n5e5)]
I
J X

J (�; �)

= XI(�; �) + �EI(n1; n3; n5); (2.26)

E(n1; n3; n5) = V + n1a1 + n3a3 + n5a5: (2.27)

Consistency conditions [10, 38] for fV; a1; a3; a5g following from the homomorphism condition (2.23)

have been accounted for in the embeddings enumerated in [24]. For example, (�; n1e1 + n3e3 +

n5e5)
3 = (1; 0) implies that we must have

U [(�; n1e1 + n3e3 + n5e5)
3]IJ X

J (�; �) = XI(�; �) + 3�EI(n1; n3; n5) ' XI(�; �): (2.28)

This last step is true because the XI(�; �) propagate on the E8 �E8 root torus where

XI(�; �) ' XI(�; �) + �LI ; 8 L 2 �E8�E8 ; (2.29)

and the embedding vectors are constrained to satisfy 3E(n1; n3; n5) 2 �E8�E8 . The results of a

detailed study of these aspects of the underlying string theory [10, 38] have been built into the

embeddings given in [24] and the recipes given below.

As noted above, the boundary conditions are labeled by the conjugacy classes of the space

group; it is clear that in the general case, the extension U in (2.22)|and more speci�cally the

embedding E(n1; n3; n5)|will be di�erent for each conjugacy class. In the description of string

states, it is therefore convenient to decompose the Hilbert space into sectors, with each sector

corresponding to a particular conjugacy class. For the Z3 orbifold, one has an untwisted sector, 27

twisted sectors corresponding to �xed point (conjugacy class) labels (n1; n3; n5), ni = 0;�1, and 27

antitwisted sectors with similar labeling. The 27 (anti)twisted sectors are often lumped together

and regarded as a single (anti)twisted sector, since the (anti)twist (i.e., the point group element)

is identical among them; we prefer not to do this here. The term \twisted state," when applied

to a particle, must be understood to refer to the string state taken to the �eld theory limit, since

it is not possible to go from one end of a particle to the other! The antitwisted sectors of the Z3
orbifold merely contain the antiparticle states of the twisted sectors, so we need not discuss them

below.
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2.3 E8 �E8: Progenitor

Prior to FI gauge symmetry breaking, the gauge group G is a rank sixteen subgroup of E8 � E8.

The theory on the orbifold involves \twisting" the E8 � E8 heterotic string. Even though G is

a subgroup of E8 � E8, its description on the string side reects the E8 � E8 symmetry of the

original theory. That is, G is \embedded into E8 � E8." To clarify what is meant by this phrase,

we rehearse a well-known example.

Recall that each irrep of a Lie group3 can be identi�ed with a weight diagram; points on the

weight diagram are labeled by weight vectors. Well-known examples are the avor SU(3)F weight

diagrams of hadrons containing only u; d; s valence quarks. In this case, the weight vectors are

two-dimensional, (�1; �2), with entries corresponding to eigenvalues of two basis elements H1;H2

of a Cartan subalgebra of SU(3)F . If we work in the limitmu = md, ms � mu, then SU(3)F is not

a good symmetry, but the avor isospin subgroup SU(2)F is. In a well-chosen basis for SU(3)F ,

the weight diagrams of SU(2)F are one-dimensional subdiagrams of the SU(3)F weight diagrams.

The points of the one-dimensional SU(2)F weight diagrams are labeled by eigenvalues of the basis

element I3 of a Cartan subalgebra of SU(2)F . However, we could just as well continue to label

states by the SU(3)F weight vectors; the isospin quantum numbers would be determined by an

appropriate linear combination

I3 = �1H1 + �2H2 (2.30)

of SU(3)F Cartan generators. The additional information contained in the two-dimensional SU(3)F
weight vectors, strangeness, determines quantum numbers under a global U(1)S symmetry group

which commutes with SU(2)F . The generator of U(1)S is given by

S = s1H1 + s2H2: (2.31)

Consistency of this decomposition requires that for any irrep R of SU(3)F ,

trR (I3S) = 0 )
2X

i;j=1

�ij�isj = 0; (2.32)

where �ij is de�ned by

trR (H
iHj) = X(R)�ij : (2.33)

To summarize, the symmetry group is GF = SU(2)F � U(1)S ; states are conveniently labeled by

SU(3)F weight vectors, which allow one to determine the quantum numbers with respect to GF ;

the weight diagrams of SU(2)F are best recognized as subdiagrams of SU(3)F weight diagrams.

We say that GF is embedded into SU(3)F .

In complete analogy, an irrep of the gauge symmetry group G of a given orbifold model will be

described by a set of basis states labeled by weight vectors of E8 � E8. The weights with respect

to nonabelian factors of G as well U(1) charges of the irrep are determined by these E8 � E8

weight vectors, just as was the case in the SU(3)F example above. The weights of the adjoint

representation are referred to as roots. Massless states in the untwisted sector correspond to a subset

of the states in the E8 � E8 adjoint representation. For this reason, we shall often have occasion

to refer to the E8 � E8 root system. For E8 � E8, the adjoint representation is the fundamental

3For a review of Lie algebras and groups see for example Refs. [39, 40, 18].
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representation and higher dimensional representations are obtained from tensor products of the

adjoint representation with itself. These higher dimensional representations appear at higher mass

levels in the ten-dimensional uncompacti�ed E8 � E8 heterotic string. These representations are

relevant to the massless spectrum in the twisted sectors of the four-dimensional theory, in a peculiar

way which will be described below. Weight vectors add when the tensor products are taken to form

higher dimensional representations; consequently, the weight diagrams of the higher dimensional

representations �ll out a weight lattice, spanned by the basis vectors of the adjoint representation

weight diagram. In the case of E8 �E8, this is the root lattice �E8�E8 , which is described in most

modern string theory texts [23]; it was also reviewed in Appendix A of our previous article [24].

Briey, the root lattice for E8 is given by

�E8 =

(
(n1; : : : ; n8); (n1 +

1

2
; : : : ; n8 +

1

2
)

����� n1; : : : ; n8 2 Z;
8X
i=1

ni = 0 mod 2

)
(2.34)

and �E8�E8 = �E8 ��E8 , the direct sum of two copies of �E8 . The sixteen entries of a root lattice

vector (n1; : : : ; n8;n9; : : : ; n16) correspond to eigenvalues with respect to a basis of the E8 � E8

Cartan subalgebra, which we write as HI (I = 1; : : : ; 16) and which is Cartesian:

trR (H
IHJ) = X(R) ÆIJ ; (2.35)

where the trace is taken over an E8 � E8 irrep R. In particular, the adjoint representation (A)

corresponds to the elements � 2 �E8�E8 with �
2 = 2. These are the 480 nonzero roots of E8�E8,

which take the form � = (�; 0) or � = (0;�) with � 2 �E8 ; �
2 = 2. It is not hard to check from

(2.34) that X(A) = 60, which is twice the value typically used by phenomenologists. Thus, the HI

in (2.35) and the eigenvalues in (2.34) are larger by a factor of
p
2 than the phenomenological nor-

malization. Positive roots are nonzero roots which have their �rst nonzero entry positive, according

to an (arbitrary) ordering system. Simple roots are positive roots which cannot be obtained from

the sum of two positive roots. The number of simple roots is equal to the rank of the Lie algebra,

which for E8 � E8 is sixteen. We label the simple roots �1; : : : ; �16. Of particular importance is

the map of roots �i into the Cartan subalgebra de�ned by

H(�i) =
16X
I=1

�IiH
I : (2.36)

From this, one de�nes an inner product on the root space:

h�ij�ji � trA [H(�i) �H(�j)] : (2.37)

Using (2.35), it is not hard to see that

h�ij�ji = X(A) �i � �j : (2.38)

It can be seen that the Dynkin index X(A)0 of the basis (2.36) is related to the index of (2.35) by

X(A)0 = 2X(A). Thus, the generators (2.36) are larger by a factor of 2 than the phenomenological

normalization; we return to this point in Section 4 below. The Cartan matrix of a Lie algebra is

de�ned by

Aij =
2 h�ij�ji
h�j j�ji

; (2.39)
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where i; j run over the simple roots. Using (2.38) and �2i = 2, it is easy to check that (2.39) is

simply expressed in terms of the sixteen-dimensional simple root vectors:

Aij = �i � �j : (2.40)

In the orbifold constructions below, a subset of the E8�E8 simple roots survive, and by computing

the submatrices according to (2.40), we can identify the nonabelian factors in the surviving gauge

group G, using widely available tables for the Cartan matrices of Lie algebras (e.g., Ref. [39]).

Finally, it is worth mentioning that by taking all linear combinations of the sixteen simple roots

with integer-valued coeÆcients, one recovers the root lattice �E8�E8 . That is,

�E8�E8 =

(
16X
i=1

mi�i

����� mi 2 Z
)
: (2.41)

2.4 Recipes

We next write down without proof recipes for the generation of the spectrum of pseudo-massless

states. Where possible, we have attempted to motivate the rules in a heuristic fashion, avoiding

a detailed discussion of the underlying string theory. For further details, see the reviews [21, 22],

texts [23], and references therein.

Nonzero root gauge states. We write these states as j�i where � satis�es:

�2 = 2; � 2 �E8�E8 ; (2.42)

� � ai 2 Z; 8 i = 1; 3; 5; (2.43)

� � V 2 Z: (2.44)

Eq. (2.42) merely states that � is an E8 � E8 root. For nontrivial fV; a1; a3; a5g, several roots of
E8 � E8 will not satisfy (2.43,2.44). Consequently, the nonzero roots of G will be a subset of the

E8�E8 roots. The states j�i are eigenstates of the generators HI of the E8�E8 Cartan subalgebra:

HI j�i = �I j�i; I = 1; : : : ; 16: (2.45)

To determine G, one �rst (fully) decomposes the solutions of (2.42-2.44) into orthogonal subsets.

That is, for a 6= b the subset f�a1; : : : ; �anag is orthogonal to the subset f�b1; : : : ; �bnbg provided

�ai � �bj = 0; 8 i = 1; : : : ; na; j = 1; : : : ; nb: (2.46)

The ath such subset corresponds to a nonabelian simple subgroup Ga of G, and the solutions

�a1; : : : ; �ana belonging to this subset are the nonzero roots of Ga. One next determines which of

the �a1; : : : ; �ana are simple roots. From the simple roots one can compute the Cartan matrix for

Ga using (2.40) and thereby determine the group Ga.

As an example, in all of the BSLA embeddings, there are precisely eight solutions to (2.42-2.44)

which do not have all �rst eight entries vanishing:

�1;1 ; �1;2 = (1;�1; 0; 0; 0; 0; 0; 0; 0; : : : ; 0); �2;1 ; : : : ; �2;6 = (0; 0; 1;�1; 0; 0; 0; 0; 0; : : : ; 0):
(2.47)
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Here (and elsewhere below), all permutations of underlined entries should be taken. These are the

nonzero roots of the observable sector gauge group GO, and should reproduce (1.1). The �rst set in

(2.47) is orthogonal to all vectors in the second set; therefore, these two sets correspond to di�erent

simple factors, one with two nonzero roots and the other with six; the two groups must be SU(2)

and SU(3). It is easy to check that the simple roots are

�1;1 = (1;�1; 0; 0; 0; 0; 0; 0; 0; : : : ; 0); (2.48)

�2;1 = (0; 0; 1;�1; 0; 0; 0; 0; 0; : : : ; 0); �2;2 = (0; 0; 0; 1;�1; 0; 0; 0; 0; : : : ; 0): (2.49)

The simple roots (2.49) give the correct Cartan matrix for SU(3), using (2.40).

Zero root gauge states. We write these states in an orthonormal basis jIi, where I =

1; : : : ; 16. These correspond to gauge states for the Cartan subalgebra of G, in the Cartesian basis

HI discussed above. They of course have vanishing E8 �E8 weights:

HI jJi = 0; 8 I; J = 1; : : : ; 16: (2.50)

The group G typically has a nonabelian part GNA which is a product of m simple factors, and a

U(1) part GUO which is a product of n U(1)s:

G = GNA�GUO; GNA = G1�G2�� � ��Gm; GUO = U(1)1�U(1)2�� � ��U(1)n: (2.51)

For the 175 orbifold models under consideration, the simple factors Ga (a = 1; : : : ;m) are either

SU(N) or SO(2N) groups. Each Ga has its own Cartan subalgebra with a corresponding basis

H1
a ; : : : ;H

ra
a , where ra is the rank of Ga. Each basis element Hi

a is a linear combination of the

E8 �E8 Cartan basis elements HI :

Hi
a =

16X
I=1

hiIa H
I : (2.52)

This is the analogue of (2.30). It should not be too surprising that corresponding linear combina-

tions of the E8 �E8 Cartan gauge states jIi are taken to obtain Cartan gauge states of Ga:

ja; ii =
16X
I=1

hiIa jIi: (2.53)

Similarly, the generator Qa of the factor U(1)a may be written as

Qa =
16X
I=1

qIaH
I (2.54)

(this is the analogue of (2.31)) and the corresponding gauge state

jai =
16X
I=1

qIajIi: (2.55)

It is convenient to choose the states jai to be orthogonal (we discuss normalization below):

hajbi = qa � qb = 0 if a 6= b: (2.56)
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For the Cartan states ja; ii, it is more convenient that their inner product reproduce the Cartan
matrix Aa for the group Ga:

ha; ijb; ji = hia � hjb = ÆabA
a
ij: (2.57)

It is hopefully apparent from (2.40) that this equation is satis�ed if we take hia to be the sixteen-

dimensional simple root vectors for Ga: h
i
a � �ai. We therefore rewrite (2.52) as

Hi
a = H(�ai) =

16X
I=1

�IaiH
I ; (2.58)

where we use the notation of (2.36); as mentioned there, these generators are larger by a factor of

two than the phenomenological normalization.

Naturally, we want the GNA Cartan states orthogonal to the GUO states:

hajb; ji = qa � �bj = 0; 8 a; b; j: (2.59)

It can be seen from the de�nitions above that this gives for any irrep R of E8 �E8

trR (QaH
j
b ) = 0; (2.60)

which is the analogue of (2.32). The qa are therefore chosen to be orthogonal to the simple roots

and to each other. With n U(1) factors, as in (2.51), the choice of qa is determined only up

to reparameterizations which preserve the orthogonality conditions (2.56,2.59). In practice, most

choices for the U(1) generators lead to several of them being anomalous. It is then useful to make

rede�nitions such that only one U(1) is anomalous. Let

ta = tr Qa; tb = tr Qb; sa = q2a; sb = q2b ; (2.61)

with ta; tb both nonzero. Then de�ne generators Q0
a =

P
I(q

0
a)
IHI and Q0

b =
P

I(q
0
b)
IHI via

q0a = tbqa � taqb; q0b = tasbqa + tbsaqb: (2.62)

It is easy to see that tr Q0
a = tbta � tatb = 0, so that the anomaly is isolated to Q0

b. Furthermore,

orthogonality is maintained:

q0a � q0b = tatb(sbq
2
a � saq

2
b ) = tatb(sbsa � sasb) = 0: (2.63)

By repeating this process, one can easily isolate the anomaly to a single factor, U(1)X .

Untwisted matter states. We denote these states as jK; ii, i = 1; 3; 5. Here, K is a

sixteen-vector, denoting weights under the E8 �E8 Cartan generators HI :

HI jK; ii = KI jK; ii; I = 1; : : : ; 16: (2.64)

Furthermore, K must satisfy

K2 = 2; K 2 �E8�E8 ; (2.65)

K � ai 2 Z; 8 i = 1; 3; 5: (2.66)
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K � V =
1

3
mod 1; (2.67)

It can be seen from comparison to (2.42-2.44) that the weights K of untwisted matter states di�er

from the weights of nonzero root gauge states only in the last condition, (2.44) versus (2.67):

untwisted matter states correspond to a di�erent subset of the nonzero E8�E8 roots which satisfy

(2.43). (The remaining subset corresponds to untwisted antimatter states.) The multiplicity of

three carried by the index i in jK; ii corresponds to a ground state degeneracy in the underlying

theory [2], which we will not discuss here. It is one of the nice features of the Z3 orbifold which

aids in easily obtaining three generation constructions. However, it also means that for �xed K,

the three generations i = 1; 3; 5 have identical U(1) charges and are in identical irreps, as can easily

be checked using (2.54,2.58,2.64):

Hj
a jK; ii = �aj �K jK; ii; (2.68)

Qa jK; ii = qa �K jK; ii: (2.69)

That is, the weight �Kaj = �aj �K is independent of i and similarly for the charge qKa = qa �K.

In order to determine the matter spectrum, we need more than just the weights (2.68); we

need to be able to group the basis states jK1; ii; : : : ; jKd(R); ii which make up a given irrep R of

dimension d(R). Suppose an incoming matter state jK; ii interacts with a gauge supermultiplet

state corresponding to a nonzero root �aj of Ga. This interaction is described by inserting a current

J(�aj), which acts like a raising or lowering operator with respect to some SU(2) subgroup of Ga:

hK 0; ijJ(�aj)jK; ii = hK 0; ijK + �aj ; ii = ÆK0;K+�aj : (2.70)

For �xed family index i, vectors K 0 related to K by the addition of one of the nonzero roots of Ga

are in the same irrep. Collecting all vectors K 0 related to K in this way (and satisfying (2.65-2.67)),

we �ll out the vertices of a weight diagram of an irrep of Ga. Due to (2.59), K 0 and K give the

same U(1) charges (as they must):

qb �K 0 = qb � �aj + qb �K = qb �K: (2.71)

Twisted non-oscillator matter states. We denote these as j ~K;n1; n3; n5i, where ni =
0;�1 specify which of the 27 �xed points (conjugacy classes) the state corresponds to and ~K is

a sixteen-vector giving the weights with respect to the E8 � E8 Cartan generators HI , similar to

Eqs. (2.45,2.64) above. However, the ~K do not correspond to points on �E8�E8 . Rather (cf. (2.27)),

~K2 = 4=3; ~K = K +E(n1; n3; n5); K 2 �E8�E8 : (2.72)

The condition ~K2 = 4=3 guarantees ~K 62 �E8�E8 since all elements L 2 �E8�E8 have L
2 = 0 mod 2,

as can be checked by inspection of (2.41). Weights and charges under G are calculated as for the

untwisted states, only now the shifted weights ~K are used. In particular,

Qa j ~K;n1; n3; n5i = qa � ~K j ~K;n1; n3; n5i
= [qa �K + qa �E(n1; n3; n5)] j ~K;n1; n3; n5i: (2.73)

Thus, the twisted matter states have charges shifted by

Æa(n1; n3; n5) = qa �E(n1; n3; n5) (2.74)
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from what would occur in the decomposition of E8 � E8 representations onto a subgroup with

U(1) factors. The quantity Æa(n1; n3; n5) is the Wen-Witten defect [41], a problematic contribution

which is uniform for a given twisted sector. It is precisely this feature which is responsible for

diÆculties accommodating the hypercharges of the MSSM spectrum and the generic appearance

of states with fractional electric charge, as will be discussed below. Comparison to (2.27) shows

that with a5 � 0, the embedding vector E(n1; n3; n5) is independent of n5. It follows that states

which di�er only by the value of n5 have identical U(1) charges and are in identical irreps of the

gauge group G. This is how three generations in twisted sectors are naturally generated in the class

of models considered here. Filling out irreps of Gb is accomplished by collecting all ~K 0 which are

related to ~K through ~K 0 = ~K + �bj , similar to what was done for untwisted states. Of course, the

other quantum numbers n1; n3; n5 must match.

It was stated above that higher dimensional irreps of E8�E8 are, in a way, relevant to massless

states in the twisted sectors. We are now in a position to address this comment. In Section 5 we

will discuss a model with an embedding such that

3E(1; 1; n5) = (0; 0;�1;�1;�1; 5; 2; 2; 3; 1; 1; 0; 1; 0; 0; 0): (2.75)

It is easy to check that a solution to (2.72) is obtained if

K = (0; 0; 0; 0; 0;�2;�1;�1;�1;�1; 0; 0; 0; 0; 0; 0): (2.76)

However, K2 = 8, so this is not a root of E8 �E8, but the weight of a higher dimensional E8 �E8

irrep. Of course, the weight of the state j ~K;n1; n3; n5i is ~K and not K, so it seems unimportant

that K2 > 2. However, qa �K in (2.32) would be the \conventional" charge while qa � E(1; 1; n5)
is the Wen-Witten defect; in this interpretation the charge qa �K which would occur if the defect

were absent is that of the decomposition a higher dimensional E8 � E8 irrep. If nothing else, it

creates the illusion that some massive states of the uncompacti�ed E8 � E8 heterotic string are

shifted down into the massless spectrum when compacti�ed on the six-dimensional orbifold.

Finally, we note that projections analogous to (2.66,2.67) are not required in the twisted sectors

of a Z3 orbifold [10, 38]. As a result, study of this orbifold is signi�cantly simpler than most other

orbifold constructions, where projections in the twisted sectors are rather complicated.

Twisted oscillator matter states. We denote these as j ~K;n1; n3; n5; ii, where i = 1; 3; 5

conveys an additional multiplicity of three, due to di�erent ways to excite the vacuum in the

underlying string theory with the analogue of harmonic oscillator raising operators; three types

of oscillators|corresponding to the three complex planes of the six-dimensional compact space|

excite the vacuum to generate a massless state. The ~K are again shifted E8�E8 weights, but they

have a smaller norm (to compensate for energy associated with the excited vacuum):

~K2 = 2=3; ~K = K +E(n1; n3; n5); K 2 �E8�E8 : (2.77)

The determination of weights, irreps and charges is identical to that for the other matter states

discussed above.

3 Discussion of Spectra

Automating the matter spectrum recipes given in the previous section, we have determined

the spectra for all 175 models. We now make some general observations based on the results of
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this analysis. Ignoring the various U(1) charges, only 20 patterns of irreps were found to exist in

the 175 models. These are summarized in Tables VIII-XI (Appendix B). In all 175 models, twisted

oscillator matter states are singlets of GNA (cf. (2.51)). Singlets notated (1; : : : ; 1)0 are either

untwisted matter states or twisted non-oscillator matter states while singlets notated (1; : : : ; 1)1
are twisted oscillator matter states. Only Patterns 2.6, 4.5, 4.7 and 4.8 have no twisted oscillator

states. In Table XII (Appendix B) we show the irreps in the untwisted sector for each of the twenty

patterns. Comparing to Tables VIII-XI, it can be seen that the majority of states in any given

pattern are twisted non-oscillator states.

In Table XIII (Appendix B) we have cross-referenced the 175 embeddings enumerated in [24]

with the twenty patterns given here. We now describe the labeling of models in Table XIII. We

emphasize that the tables referenced in the following itemized list are not the tables contained in

this article! Rather, table references in the following list correspond to tables in our previous article,

Ref. [24]. Models are labeled in the format \i:j" where:

(a) for i = 1; 2; 4 or 6, i is the CMM observable sector embedding according to the labeling of

Table I of Ref. [24] and j is the hidden sector embedding label as per the corresponding choice

of table from the set Tables III-VI of Ref. [24];

(b) i = 8 corresponds to the CMM observable sector embedding 8 according to the labeling of

Table I of Ref. [24] and j is the hidden sector embedding according to the labeling of Table

VII of Ref. [24] ;

(c) i = 10 also corresponds to the CMM observable sector embedding 8 according to the labeling

of Table I of Ref. [24], but now j is the hidden sector embedding according to the labeling of

Table VIII of Ref. [24];

(d) i = 9 corresponds to the CMM observable sector embedding 9 according to the labeling of

Table I of Ref. [24] and j is the hidden sector embedding according to the labeling of Table

IX of Ref. [24];

(e) i = 11 also corresponds to the CMM observable sector embedding 9 according to the labeling

of Table I of Ref. [24], but now j is the hidden sector embedding according to the labeling of

Table X of Ref. [24].

We remind the reader that CMM observable sector embeddings 3, 5 and 7 do not appear because

they are equivalent to 1, 4 and 6 respectively, as shown in Ref. [24].

All patterns except Pattern 1.1 have an anomalous U(1)X factor. We have determined the FI

term for each of the models in the other 19 patterns. We �nd that all models within a particular

pattern have the same FI term; the corresponding values of �X , de�ned in (1.10) above, are

displayed in Table II. As will be discussed in greater detail in Section 5.2, Kaplunovsky [42] has

estimated the string scale to be

�H � gH � 5:27 � 1017 GeV = 0:216 � gHmP : (3.1)

Using the values in Table II, it is easy to check that

�H=1:73 � �X � �H : (3.2)
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Pattern �X=(gHmP ) Pattern �X=(gHmP )

1.2 0.216 2.6, 3.3, 4.6 0.170

2.1, 4.2 0.125 3.1, 4.3 0.148

2.2, 2.3, 4.1 0.138 3.2, 4.4, 4.8 0.176

2.4 0.186 3.4 0.181

2.5 0.191 4.5, 4.7 0.157

Table II: The U(1)X symmetry breaking scale �X for each of the irrep patterns.

The e�ective supergravity lagrangian describing the �eld theory limit of the string is nonrenor-

malizable. In principle, all superpotential and K�ahler potential operators allowed by symmetries

of the underlying theory should be present. As discussed in Appendix A, there exist �eld repa-

rameterization invariances in the e�ective theory. These invariances relate di�erent classical �eld

con�gurations, or vacua. Expansion about a particular vacuum leads to a nonlinear � model. For

instance, this is reected in the presence of superpotential operators such as (2.1) above, with ever

increasing numbers n of Xiggses. For the nonlinear � model to be perturbative, it must be possible

to truncate the sequence of operators at some order nmax and obtain a reasonable approximation to

the full theory. Since the relevant expansion parameter for nonrenormalizable operators is roughly

�X=mP , which from Table II lies in the range

gH=8:00 � �X=mP � gH=4:63; (3.3)

the nonlinear � model has a reasonable chance to be perturbative, provided the uni�ed coupling

satis�es gH <� 1 and the number of operators contributing to an e�ective coupling (such as the

AAc coupling in (2.1)) is not too large. (Generically, the number of such operators increases with

dimension.)

Given the importance of nonvanishing vevs to the perturbative expansion of the nonlinear �

model, we next estimate the range of Xiggs vevs. We will assume that gH � 1 in (3.3), as suggested

by analyses of the running gauge couplings; for example, see Section 5.2 below. Then from (3.3)

we have

�X � O(10�1) mP : (3.4)

Furthermore, we assume that Xiggs �elds have a nearly diagonal K�ahler potential at leading order

in an expansion about the vacuum:

KXiggs =
X
i

*
@2K

@�i@ ��i

+
j�ij2 + � � � ; (3.5)

with the terms represented by \� � �" negligible in comparison to the explicit terms. This assumption
is justi�ed by the known form for the terms in K quadratic in matter �elds for Z3 orbifolds with

nonstandard embedding [43], such as the cases considered here. In the limit of vanishing o�-diagonal

T-moduli (i.e., hT iji = 0; 8 i 6= j),

Kquad.-matter =
X
i

j�ij2Q
j=1;3;5(T

j + �T j)q
i
j

: (3.6)
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Here, qij are the modular weights of the matter �eld �
i: untwisted states jK; ii have modular weights

qij = Æij , while twisted non-oscillator states j ~K;n1; n3; n5i have modular weights qij = 2=3 and

twisted oscillator states j ~K;n1; n3; n5; ii have modular weights qij = 2=3 + Æij . Moduli stabilization

in the BGW model gives hT ji = 1 or ei�=6 8 j. Assuming the former value and applying (3.6), we

�nd *
@2K

@�i@ ��i

+
BGW

=

8>><
>>:

1=2 untwisted;

1=22 twisted non-oscillator;

1=23 twisted oscillator :

(3.7)

This ignores the possible contribution of terms K 3 (c=m2
P ) f(T ) j�ij2j�j j2, with both �elds �i; �j

Xiggses and f(T ) a function of the T-moduli. If we assume h�ii � h�ji � �X , these quartic terms

(which include i-j mixing) are suppressed by O(�2
X=m

2
P ) relative to the leading terms. However,

we still have to estimate h�ii and h�ji, so at the end of our analysis we will have to check whether or
not it was consistent to neglect these quartic terms. It is also unclear what the moduli-dependent

function f(T ) is, and whether or not the dimensionless coeÆcient c is O(1); an explicit calculation

of such higher order K�ahler potential terms from the underlying string theory apparently remains

to be accomplished.

In large radius (LR) stabilization schemes such as in Refs. [44, 45], T-moduli vevs as large as

13 <� hT ji <� 16 are envisioned. This greatly a�ects our estimates for the Xiggs vevs, since we now

have (for the larger value of hT ji = 16)

*
@2K

@�i@ ��i

+
LR

=

8>><
>>:

1=32 untwisted;

1=322 twisted non-oscillator;

1=323 twisted oscillator :

(3.8)

Let N be the number of Xiggses, qX be the average Xiggs U(1)X charge magnitude, K 00 be

the average value for the Xiggs metric h@2K=@�i@ ��ii and � be the average value for jh�iij, where
\average" is used loosely. Then from (1.9,1.10) we see that hDXi = 0 implies

� �
�
NqXK 00

��1=2
�X : (3.9)

In Section 5 we will see in an explicit example that the (properly normalized) nonvanishing U(1)X
charges vary between 1=

p
84 � 0:11 to 6=

p
84 � 0:65. We take this as an indication that 1=10 <�

qX <� 2=3 is reasonable. In a typical model there are 3 � O(50) chiral matter multiplets. The

number N which may acquire vevs to cancel the FI term varies from one at direction to another.

A reasonable range is 1 <� N <� 50, given the enormous number of GSM �GC singlets in any of the

models.

If a single twisted oscillator �eld �i of charge 1=10 dominates the FI cancellation (i.e., �i is the

only Xiggs or all of the other Xiggses have much smaller vevs so that e�ectively N = 1 in (3.9)),

then with the BGW T-moduli stabilization

� �
p
10� 23 �X � O(1) mP ; (3.10)

where we have used (3.4). Such a large vev is certainly troubling. If the large radius value hT ji � 16

is assumed, the result is a hundred times worse:

� �
p
10� 323 �X � O(102) mP : (3.11)
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On the other hand, if we had, say, 50 Xiggs �elds �i with more average charges of roughly 1=2

contributing equally to cancel the FI term, with the typical �eld a twisted nonoscillator �eld, and

the BGW stabilization of T-moduli,

� �
q
2� 22=50 �X � O(10�2) mP : (3.12)

However, for the large radius case,

� �
q
2� 322=50 �X � O(1) mP : (3.13)

This examination of (1.9) indicates that for the BGW stabilization, Xiggs vevs are naturally

O(10�1�1) mP . At the upper end, the � model would seem to be in trouble. The large ra-

dius case appears to be complete catastrophe, however we arrange cancellation of the FI term. To

be fair, the quadratic terms K 3 (c=m2
P ) f(T ) j�ij2j�j j2 mentioned above now need to be included

in the estimation of Xiggs vevs, since they are not of sub-leading order in the large Xiggs vev limit.

It should be noted, however, that the principal motivation for the large radius assumption is to

produce appreciable string scale threshold corrections to the running gauge couplings, such as was

studied in [45, 46]; there, the aim was to achieve gauge coupling uni�cation at the conventional value

of approximately 2� 1016 GeV. In a Z3 orbifold compacti�cation, these large T-moduli dependent

threshold corrections coming from heavy string states are absent [47]. Nevertheless, it should be

clear from the above analysis that orbifolds which do have the T-moduli dependent string threshold

corrections and a U(1)X factor are likely to also su�er from a problem of too large Xiggs vevs in

the large radius limit, because of the noncanonical K�ahler potential.

Moderately large, yet perturbative, vevs such as � � mP=5 would require large n in (2.1) to

generate signi�cant hierarchies. This may be a virtue: in many cases orbifold selection rules and G

symmetries require that leading operators contributing to a given e�ective low energy superpotential

term have signi�cantly higher dimension than might be guessed from GSM�GC alone. For example,

in the FIQS model (mentioned in the Introduction) the leading down-type quark masses come from

dimension eleven operators. (I.e., the e�ective Yukawa matrix elements are sums of vevs of seventh

degree monomials of Xiggs �elds.)

The sum in (1.9) allows for some terms to be very small if others are O(�X); we exploited this

possibility in a recent study of e�ective quark Yukawa couplings induced by Xiggs vevs of rather

di�erent scales [16]. Such hierarchies in Xiggs vevs remain to be (dynamically) motivated from a

detailed study of an explicit scalar potential which lifts the D-moduli at directions [15] mentioned

in the Introduction. The existence of these at directions means that the upper bound estimates

made here for Xiggs vevs are not at all robust. Xiggs of opposite U(1)X charge may be \turned on"

along a particular at direction (as in the FIQS model). In that case their contributions partially

cancel each other; it is technically possible for the Xiggs vevs to be made arbitrarily large as a

result. Of course, this would quickly spoil the nonlinear � model expansion.

The BSL-I model mentioned in the Introduction belongs to Pattern 1.2 and is equivalent to one

of the models 6.1-3 listed under that pattern in Table XIII. (CMM found that the BSL-I model

observable sector embedding was equivalent to CMM 7, and in [24] we showed that CMM 7 is

equivalent to CMM 6.) In [15] it was noted that the FIQS model su�ers from a problem of light

diagonal T-moduli masses; the conclusions made there do not depend on the choice of (hidden

SO(10) preserving) at direction, and therefore hold for other vacua of the BSL-I model, such as
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those studied by Casas and Mu~noz [14]. As will shortly be explained, the light mass problem is

a consequence of having GC = SO(10) charged matter �elds only in the untwisted sector. This

observation extends to all models of Pattern 1.2, as well as to the models of Pattern 1.1. Because

BGW stabilize the diagonal T-moduli with nonperturbative e�ects in the hidden sector (i.e., gaugino

condensation), they simultaneously derive an e�ective (soft) mass term for these �elds [26]. If the

e�ective moduli masses are much larger than the gravitino mass, the cosmological moduli problem

[48] can be avoided. In the BGW e�ective theory, one �nds for the diagonal T-moduli

mT � 2
jbGS � bC j
jbC j

m ~G; (3.14)

where bC is the beta function coeÆcient for the condensing group GC , m ~G is the gravitino mass and

bGS is the Green-Schwarz counterterm coeÆcient, a quantity whose origin is not important to the

present discussion, but which is briey explained in Appendix A. If bGS=bC � 10, then mT � 20m ~G;

it was argued by BGW, and others [49], that this may be heavy enough to resolve the cosmological

moduli problem.

However, as pointed out in Ref. [15], if GC has only trivial irreps in the twisted sector, bGS = bC .

The T-moduli are massless to the order of the approximation made in (3.14), and the moduli

problem reappears with a vengence. To see how bGS = bC occurs in Patterns 1.1 and 1.2, it is only

necessary to note a few simple facts. In Appendix A we use well-known results to demonstrate

that, for the class of models studied here, the Green-Schwarz coeÆcient is given by

bGS = btota � 2
X
�2tw

Xa(R
�); 8 Ga 2 GNA; (3.15)

where btota is the � function coeÆcient (given by (1.4) with GC ! Ga) calculated from the entire

pseudo-massless spectrum of a given model, and the index � runs only over twisted matter chiral

supermultiplet irreps. In Table III we show bGS for each of the twenty patterns; the value is

universal to all models in a given pattern. From (3.15) it is clear that bGS = btota for Ga with only

trivial irreps in the twisted sector. This occurs for SO(10) in Patterns 1.1 and 1.2, so that one has

bGS = btot10 ; we also recall GC = SO(10) in these patterns; this leads to vanishing T-moduli masses

in (3.14) if bC = btot10 . One might hope to get around this by giving some of the SO(10) charged

matter O(�X) vector mass couplings so that bC , the e�ective coeÆcient which appears in the theory
below the scale �X , is di�erent from btot10 . Pattern 1.1 does not contain SO(10) charged matter so

this is fruitless. In Pattern 1.2, the SO(10) matter is in 16s, which have as their lowest dimensional

invariant (16)4. To have e�ective vector masses for these states from superpotential terms would

require breaking SO(10). We leave these issues to further research. Another way resolve the light

moduli problem in Patterns 1.1 and 1.2 would involve alternative ination scenarios. For example,

light moduli could be diluted via the thermal ination of Lyth and Stewart [50]. Lastly, we note

that the BGW result (3.14) is obtained in an e�ective theory which does not account for a U(1)X ;

until it is understood how the BGW e�ective theory is modi�ed in the presence of a U(1)X factor

[30], �rm conclusions about the Pattern 1.2 models cannot be drawn. (Recall that Pattern 1.1 has

no U(1)X factor.)

The values for bGS are problematic for more than just the Pattern 1.1 and 1.2 models. For

example, in the GC = SU(5) Patterns 2.2-5, the Green-Schwarz coeÆcient is bGS = �15 and we

can constrain �15 � bC � �6. The bound �15 comes from a scenario of pure SU(5); i.e., no
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Pattern bGS Pattern bGS

1.1 -24 1.2, 2.1 -18

2.2-5, 3.1 -15 3.2-4, 4.1-4, 4.6 -12

2.6, 4.5, 4.7-8 -9

Table III: Green-Schwarz coeÆcients.

matter. Pattern 2.2 for instance allows for the possibility that the vector-like 3(5 + �5) matter

acquires mass at �X , so that e�ectively there is no SU(5) charged matter in the running which

dynamically generates the condensation scale. The bound �6 comes from the \marginal" case of

very low �C discussed in the Introduction. For this range of bC we have from (3.14)

0 �mT � 3m ~G: (3.16)

From the arguments of [26, 49], the T-moduli mass appears to be too light even in the marginal

case bC = �6, which gives the upper bound for mT . Taking the bC = �6 limit for each of the

values of bGS (except bGS = �24 which corresponds to Pattern 1.1 discussed above|where it seems

mT � 0 is unavoidable), we �nd upper bounds of mmax
T =m ~G � 4; 3; 2; 1 for bGS = �18;�15;�12;�9

respectively. Thus, the light T-moduli mass problem is a general feature of the BSLA models.

Most of the 20 patterns contain (3+�3; 1) representations under SU(3)C�SU(2)L. It is necessary
to �nd a vacuum solution which gives these �elds vector mass couplings at a high enough scale. The

greater the number of such pairs, the more diÆcult this is to achieve, since one must simultaneously

avoid high scale supersymmetry breaking; more and more �elds must be identi�ed as Xiggses in

order to give all of the required e�ective supersymmetric mass couplings. As each new Xiggs is

introduced, it is harder to avoid nonzero F-terms at the scale �X . Similarly, large vector masses

are generally required for the many additional (1; 2) and (1; 1) representations present in all of the

models. The electroweak hypercharges of these representations depend on how the several U(1)s are

broken in choosing a D-at direction. States with exotic electric charge (i.e., leptons with fractional

charges and quarks which may form fractionally charged color singlet bound states) typically occur.

We will address constraints on the presence of such matter in Section 5 below.

The distinction between observable and hidden sectors is blurred by twisted states in nontrivial

representations of both GO and GH . Gauge interactions communicating with both sectors are a

well-known e�ect in orbifold models. Communication via U(1)s was for example noted in Refs. [10,

51, 52], while the occurence of states in nontrivial representations of both observable and hidden

nonabelian factors has been noted in other orbifold constructions, for example in a Z3 � Z3 model

in Ref. [46]. Cases 2 through 4 (cf. Table I) have at least one hidden SU(2) factor (which we

denote SU(2)0), and (1; 2; 2) representations under SU(3)C � SU(2)L � SU(2)0 occur in several of

the patterns. No (�3; 1; 2) representations occur, so it is not possible to use SU(2)0 to construct a

left-right symmetric model in any of the 175 models studied here. (Left-right symmetric models

would place the uc- and dc-type quarks in (�3; 1; 2) representations.) All 175 models contain twisted

states in nontrivial irreps of SU(3)C � SU(2)L charged under U(1)s contained in GH .

It is an interesting question to what degree these features might communicate supersymmetry

breaking to the observable sector. A similar scenario has been considered by Antoniadis and Benakli
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[53]. Speci�cally, they examined hidden sector matter with supersymmetric masses M and a soft

mass ÆM splitting the matter scalars from fermions, gauginos from vector gauge bosons, with the

assumption ÆM � M ; this \hidden" matter was also assumed to be in nontrivial irreps of GSM.

They found signi�cant contributions to the soft terms which break supersymmetry in the MSSM.

To evaluate the implications of such gauge mediation of supersymmetry breaking in the 175 models

at hand requires a signi�cant extension of their results, given the strong dynamics of the hidden

sector in a gaugino condensation scenario; much of the hidden sector matter now consists of bound

states of GC which are GSM neutral (certainly the case for those condensates which acquire the

supersymmetry breaking nonvanishing vevs) yet contain particles in nontrivial GSM irreps. We

leave these matters to future research.

The generic presence of an anomalous U(1)X has implications for low energy supersymmetric

models which aim to be \string-inspired" or \string-derived." The e�ective theory in the low

energy limit is obtained by integrating out states which get large masses due to the U(1)X FI

term. The surviving spectrum of states will generally contain superpositions of the original states,

mixing the various sectors. Thus, assigning each state in the MSSM to a de�nite sector (i.e., the

untwisted sector or one of the 27 (n1; n3; n5) twisted sectors) is in many cases inconsistent with

the mixing which occurs in the presence of a U(1)X , as was for instance remarked recently in

Ref. [54]. Mixings of sectors was considered for quarks, for example, in the FIQS model and in

the toy model of Ref. [16]. In addition to modi�ed properties for the spectrum, integrating out

the massive states will modify the interactions of the light �elds and create threshold e�ects for

running couplings. These threshold e�ects can be large due to the large number of extra states,

and need to be considered in any analysis of gauge coupling uni�cation, for example.

4 Hypercharge

4.1 Normalization in GUTs

An important feature of GUTs is that the U(1) generator corresponding to electroweak hypercharge

does not have arbitrary normalization. This is because the hypercharge generator is embedded into

the Lie algebra of the GUT group. That is, GGUT � SU(3)C � SU(2)L � U(1)Y . The uni�ed

normalization is most clear when one identi�es a Cartesian basis for the GUT group generators T a

for a given representation R:

trR T aT b = X(R) Æab: (4.1)

The normalization prevalent in phenomenology has X(F ) = 1=2 for an SU(N) fundamental rep-

resentation F . Because of the GUT symmetry, the interaction strength of a gauge particle with

matter is given by

gU (�) T
a; 8 a; (4.2)

where gU (�) is the running coupling for the GUT gauge group at the scale � � �U , with �U
the uni�cation scale. One of the T a, say T 1, is then identi�ed with the electroweak hypercharge

generator. However, to obtain the usual eigenvalues for MSSM particles (e.g., Y = 1 for ec) we

generally must rescale the generator:

Y �
p
kY T 1: (4.3)
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The reason for writing the rescaling constant in this way will become clear below. Because of

(4.2,4.3), the hypercharge coupling gY (�) will be related to gU (�) at the boundary scale �U . More

precisely,

gU (�U ) T
1 = gY (�U ) Y =

p
kY gY (�U ) T

1; (4.4)

since the interaction strength should not depend on normalization conventions for the generators.

We maintain the GUT normalization for the generators T a which correspond to the unbroken SU(2)

and SU(3) groups, so that there are no rescalings analogous to (4.3) for these two groups; their

running couplings are denoted by g2(�) and g3(�) respectively. Because of (4.2), they too must

be matched to the boundary value gU (�U ) when � = �U ; thus, we obtain the well-known GUT

boundary conditions

g3(�U ) = g2(�U ) =
p
kY gY (�U ) = gU (�U ): (4.5)

For example, consider an SU(5) GUT [55]. The SU(5) embedding of hypercharge, which we

write as T 1, can be determined from the requirement that tr (T 1)2 = 1=2 for a fundamental or

antifundamental irrep. For example,

T 1 =
1p
60

diag (�3;�3; 2; 2; 2); for �5 =

 
L

dc

!
: (4.6)

Here, L is a (1; 2) lepton, and dc is a (�3; 1) down-type quark, where we denote SU(3)C � SU(2)L
quantum numbers. On the other hand, the electroweak normalization has by convention

Y =
1

6
diag (�3;�3; 2; 2; 2) (4.7)

for the same set of states. Since Y =
p
5=3 T 1, we see from (4.3) that

kY = 5=3: (4.8)

It is this value which, when assumed in (4.5), yields the amazingly successful gauge coupling

uni�cation in the MSSM, detailed for example in Refs. [56, 57].

4.2 Normalization in String Theory

As in GUTs, the normalization of U(1) generators in string-derived �eld theories requires care.

Above, we have alluded to the fact that gauge coupling uni�cation at the heterotic string scale

�H is a prediction of the underlying theory [58]. Just as in GUTs, uni�cation of the hypercharge

coupling with the couplings of other factors of the gauge symmetry group G corresponds to a

particular normalization. However, the uni�ed normalization of hypercharge is often di�erent than

the one which appears in SU(5) or SO(10) GUTs; in fact it is often diÆcult or impossible to

obtain (4.8). Examples of this hypercharge normalization \diÆculty" will be examined below. We

will show how the uni�ed normalization can be identi�ed from very simple arguments. In the

process we will make it very clear why, in the class of orbifold models considered here, nonstandard

hypercharge normalization is generic and fractionally charged exotic matter is abundant.

It was noted in Section 2 that the basis (2.58) is larger by a factor of two than the phenomeno-

logical normalization. Thus, tr (T a)2 = 2 for an SU(N) fundamental representation. For instance,
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consider an untwisted SU(2)L doublet with respect to �1;1 in (2.48) above, for CMM 2 observable

sector embeddings. (The embedding label here corresponds to Table I of Ref. [24].) The lowest and

highest weight states are respectively

K1 = (0; 1; 0; 0; 0; 1; 0; 0; 0; : : : ; 0);

K2 = K1 + �1;1 = (1; 0; 0; 0; 0; 1; 0; 0; 0; : : : ; 0): (4.9)

Using Eqs. (2.48,2.68), the corresponding weights are �1; this gives tr (H1
1 )

2 = 2, where H1
1 = T 3,

the isospin operator of SU(2)L. To get to the phenomenological normalization, we should rescale

generators by 1=2. Thus, instead of (2.58), we de�ne our properly normalized Cartan generators

Ĥi
a according to

Ĥi
a =

16X
I=1

ĥiIa H
I �

16X
I=1

1

2
�IaiH

I : (4.10)

In this case, the sixteen-vectors ĥia satisfy

(ĥia)
2 = 1=2: (4.11)

It is hardly surprising that the properly normalized generator Q̂a of U(1)a must also satisfy (q̂a)
2 =

1=2, where q̂a is the sixteen-vector appearing in (2.54), but now with a special normalization. After

all, the generator of U(1)a just corresponds to a di�erent linear combination of the E8�E8 Cartan

generators HI , and taking a linear combination of the same norm is the logical choice. If, on the

other hand, we work with a generator Qa =
p
kaQ̂a, then it follows that q2a = ka=2. This is one

way of motivating the \aÆne level" of a U(1) factor:

ka = 2
16X
I=1

(qIa)
2: (4.12)

(This relation also follows from a consideration of the double-pole Schwinger term which occurs

in the operator product of U(1) currents in the underlying conformal �eld theory [13, 59, 60, 61],

details which we have purposely avoided here.) The uni�ed normalization, where nonabelian Cartan

generators Ĥi
b and U(1) generators Q̂a have in common (ĥib)

2 = q̂2a = 1=2, corresponds to ka = 1.

4.3 SU(5) Hypercharge Embeddings

Note that the generator

Y1 =
16X
I=1

yI1H
I ; y1 =

1

6
(�3;�3; 2; 2; 2; 0; 0; 0; 0; : : : ; 0); (4.13)

satis�es kY1 = 5=3, is orthogonal to the SU(3)C � SU(2)L roots in (2.47), and has nonzero entries

only in the subspace where the SU(3)C �SU(2)L roots have nonzero entries. Furthermore, it gives

Y1 = y1 �K1;2 = �1=2 to the doublet in (4.9), corresponding to the lepton doublets L or the Hd

Higgs doublet of the MSSM. The BSLA models with observable sector embedding CMM 2 also

include (�3; 1) states in the untwisted sector with weights

K3;4;5 = (0; 0; 1; 0; 0;�1; 0; 0; 0; : : : ; 0): (4.14)
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These have Y1 = y1 � K3;4;5 = 1=3, corresponding to the dc states. Finally, the untwisted sector

contains (3; 2) states with weights

K6;:::;11 = (�1; 0;�1; 0; 0; 0; 0; 0; 0; : : : ; 0) (4.15)

which have Y1 = y1 �K6;:::;11 = 1=6, corresponding to the quark doublets Q. Thus, the untwisted

sector contains a �5 and an incomplete 10 under the \would-be" SU(5) into which we wish to embed

SU(3)C � SU(2)L � U(1)Y1 , taking (4.13) to be the hypercharge generator. The fact that the ec

and uc representations needed to �ll out the 10 irrep are not present in the untwisted sector is a

troubling feature which is generic to the 175 models studied here.

In Table XII (Appendix B) we display the irreps present in the untwisted sector for each of the

twenty patterns. In no case do we have the required irreps to build a 10 of SU(5). In those cases

where one �nds (3; 2) + (�3; 1), the states which are singlets of the observable SU(3)� SU(2) are in

nontrivial irreps of the hidden sector group. One could imagine breaking the hidden sector group

and using a singlet of the surviving group to give the necessary (1; 1) irrep to �ll out a 10. For

instance, in Pattern 2.2, the (1; 1; 1; 2) irrep, a 2 of the hidden SU(2)0, would give two singlets if

we break SU(2)0 with nonvanishing vevs for a pair of twisted sector (1; 1; 1; 2) irreps along a D-at

direction. (A pair is required to have vanishing D-terms for SU(2)0.) We would thereby obtain

three generations of two (1; 1; 1) irreps with respect to the surviving nonabelian gauge symmetry

SU(3) � SU(2) � SU(5), where the SU(5) shown here is the hidden condensing gauge group.

However, the untwisted (1; 1; 1; 2) irrep which gives these states has an E8 � E8 weight vector K

of the form K = (0;�); � 2 �E8 , since it is an untwisted state charged under the hidden sector

gauge group. Then it has vanishing charge with respect to the generator Y1 according to (4.13),

rather than the required Y1 = 1. We could overcome this by modifying y1 to have nonzero entries

in the hidden sector portion, represented by 0; : : : ; 0 in (4.13). However, according to (4.12), this

would increase kY over the value of 5=3 which y1 gives. Moreover, it can be seen that one never has

enough untwisted (�3; 1) irreps to give three generations of both uc- and dc-type quarks, and that

untwisted (1; 2) irreps always occur when an untwisted (�3; 1) is present. Thus, even if we break the

hidden gauge group, use a singlet to complete the 10, are willing to consider kY > 5=3, and �nd

the (�3; 1) has Y1 = �2=3 so that it �ts into a 10, the (1; 2) would stand for an incomplete �5. It

is inevitable that we use states from the twisted sectors to �ll out the MSSM; as we have already

alluded to in Section 2, twisted states have unusual U(1) charges (partly) because the E8 � E8

weights are shifted by the embedding vectors E(n1; n3; n5).

Let us now examine the relationship of (4.13) to SU(5). To begin with we relabel the SU(3)�
SU(2) simple roots in (2.48,2.49) as

�1 � �1;1; �2 � �2;1; �3 � �2;2: (4.16)

These may be supplemented by a fourth E8 �E8 root

�4 = (0; 1;�1; 0; 0; 0; 0; 0; 0; : : : ; 0) (4.17)

to give the correct Cartan matrix for SU(5), according to (2.40). In this way we embed SU(3) �
SU(2) into a would-be SU(5) subgroup of the observable E8 factor of E8 � E8. A (properly

normalized) basis Ĥ1; : : : ; Ĥ4 for the Cartan subalgebra of the would-be SU(5) is given in terms of

the E8�E8 Cartan generators HI according to the methods described in Section 2, supplemented
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�1 �4 �2 �3

r r r r

Case 1

�1 �4 �3 �2

r r r r

Case 2

Figure I: Would-be SU(5) Dynkin diagrams.

by the normalization considerations which led to (4.10). That is, we take linear combinations

described by sixteen-vectors ĥi = �i=2, so that

Ĥi =
16X
I=1

1

2
�IiH

I : (4.18)

However, when we decompose SU(5) � SU(3)�SU(2)�U(1) we want to take the U(1) generator

to be orthogonal to the generators Ĥ1;2;3 associated with the simple roots (4.16), unlike Ĥ4. (This

is the analogue of (2.32).) We thus make a change of basis, keeping ĥi = �i=2 for i = 1; 2; 3 while

taking the fourth vector to be an orthogonal linear combination of the four simple roots:

y =
4X
i=1

ri�i; where y � �i = 0; i = 1; 2; 3: (4.19)

The orthogonality constraint in (4.19) and the fact that �Ii = 0 for I = 6; : : : ; 16 requires

y = (a; a; b; b; b; 0; 0; 0; 0; : : : ; 0); (4.20)

while
P

I �
I
i = 0 requires 2a = �3b. From here it is easy to check that with normalization

kY = 5=3, we have y = y1, Eq. (4.13). Thus we see that y1 corresponds to a natural completion

of the SU(3)� SU(2) roots (4.16) into a would-be SU(5) subgroup of the observable E8. We note

that (4.20) has the form of a minimal embedding of hypercharge, in the spirit of the analysis carried

out in [59].

Now we come to the origin of the subscript in (4.13). It turns out that (4.17) is not the unique

E8 root which may be appended to �1; �2; �3 to obtain the simple roots of an SU(5) subalgebra of

the observable E8. The two ways that a supposed �4 could be related to the roots �1; �2; �3 are

shown in the Dynkin diagrams of Figure I. A line connecting �i to �j indicates �i ��j = �1; if not
connected by a line, �i � �j = 0.

We de�ne y as in (4.19), except that now we allow �4 to be any observable E8 root (i.e.,

�4 = (�; 0), � 2 �E8 , �
2 = 2) consistent with Figure I. We simultaneously demand 2y2 = 5=3,

corresponding to kY = 5=3 from (4.12). This gives solutions:

y = �1

6
(3�1 + 4�2 + 2�3 + 6�4) Case 1; (4.21)

y = �1

6
(3�1 + 2�2 + 4�3 + 6�4) Case 2 : (4.22)
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In each of the 175 models we consider here, the only (3; 2) representations under the observable

SU(3) � SU(2) are contained in the untwisted sector, and they all take the form (4.15). To

accommodate the MSSM we require that this representation have Y = y �K6;:::;11 = 1=6. It suÆces

to demand this for any of the six Ki since by (4.19)

(Ki + �j) � y = Ki � y; 8 i = 6; : : : ; 11; j = 1; 2; 3: (4.23)

(Recall from the discussion in Section 2 that the weights K6;:::;11 are related to each other by the

addition of SU(3)� SU(2) roots.) We choose to employ

K6 = (�1; 0;�1; 0; 0; 0; 0; 0; 0; : : : ; 0): (4.24)

It is easy to check that for Eq. (4.21), K6 � y = 1=6 imposes

K6 � �4 =
(

4=3 (+);

1 (�): (4.25)

Since �4 can only have integral or half-integral entries, we must take the negative sign in (4.21)

and K6 � �4 = 1. For Eq. (4.22), K6 � y = 1=6 imposes

K6 � �4 =
(

1 (+);

2=3 (�): (4.26)

Now we must take the positive sign in (4.22). To summarize, imposing that the quark doublet have

Y = 1=6 constrains �4 to satisfy the additional constraint

K6 � �4 = 1 (4.27)

and determines the signs in (4.21,4.22):

y = �1

6
(3�1 + 4�2 + 2�3 + 6�4) Case 1; (4.28)

y =
1

6
(3�1 + 2�2 + 4�3 + 6�4) Case 2 : (4.29)

As noted briey in Section 2, the ordering by which nonzero E8 � E8 roots are determined to

be positive is arbitrary. A particular lexicographic ordering for the �rst E8 can be speci�ed by

an eight-tuple (n1; n2; : : : ; n8). Here, n1 tells us which entry should be checked �rst, n2 tells us

which entry should be checked second, etc. For example, (8; 7; 6; 5; 4; 3; 2; 1) would instruct us to

determine positivity by reading the entries of a given E8 root vector backwards, right to left. It

is easy to see that several lexicographic orderings are consistent with �1; �2; �3 being regarded as

positive; in fact, the number of such orderings is 3360. Our �nal restriction on �4 is that it for one

of these 3360 orderings, �4 is also positive. This is necessary if it is to be regarded as a simple root

of a would-be SU(5).

When all of the conditions described above are taken into account, the complete list of observable

E8 roots �4 and the corresponding vectors y which result can be determined by straightforward
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analysis of the 240 nonzero E8 roots. The results are given in Table IV. We label the four additional

y solutions according to:

y2 =
1

6
(0; 0;�1;�1;�1;�3;�3;�3; 0; : : : ; 0);

y3;4;5 =
1

6
(0; 0;�1;�1;�1;�3; 3; 3; 0; : : : ; 0): (4.30)

In what follows, we refer to Yi, i = 1; : : : ; 5, as the �ve possible SU(5) embeddings of the hypercharge

in the BSLA models.

�4 y

(0; 1;�1; 0; 0; 0; 0; 0; 0; : : : ; 0) 1
6(�3;�3; 2; 2; 2; 0; 0; 0; 0; : : : ; 0)

(�1
2
; 1
2
;�1

2
; 1
2
; 1
2
; 1
2
; 1
2
; 1
2
; 0; : : : ; 0) 1

6
(0; 0;�1;�1;�1;�3;�3;�3; 0; : : : ; 0)

(�1
2 ;

1
2 ;�1

2 ;
1
2 ;

1
2 ;

1
2 ;�1

2 ;�1
2 ; 0; : : : ; 0)

1
6(0; 0;�1;�1;�1;�3; 3; 3; 0; : : : ; 0)

(�1; 0; 0; 0; 1; 0; 0; 0; 0; : : : ; 0) 1
6(�3;�3; 2; 2; 2; 0; 0; 0; 0; : : : ; 0)

(�1
2 ;

1
2 ;�1

2 ;�1
2 ;

1
2 ;�1

2 ;
1
2 ;

1
2 ; 0; : : : ; 0)

1
6(0; 0;�1;�1;�1;�3; 3; 3; 0; : : : ; 0)

Table IV: Observable E8 roots which embed SU(3)C � SU(2)L into a would-be SU(5).

A model must also have Y non-anomalous for it to survive unmixed with other U(1) factors

below �X . Many models have a trace anomaly for one or more of the �ve Yi. This would not

occur if complete SU(5) irreps were present. We have already seen that the untwisted sector does

not contain complete would-be SU(5) irreps for any of the 175 models (cf. Table XII). Of course,

whether or not Y1 is anomalous in those models also depends on the matter content of the twisted

sectors. This in turn depends on the hidden sector embedding through (2.72); consequently, each

of the 175 models must be studied separately.

We have determined the charges of all matter irreps with respect to Yi (i = 1; : : : ; 5) for all of

models. In those models where a given Yi is not anomalous, the MSSM particle spectrum is never

accommodated. That is not to say that we do not have enough (3; 2)s, (�3; 1)s, (1; 2)s and (1; 1)s;

in fact, we typically have too many of the latter three types, as can be seen from Tables VIII-XI.

The diÆculty comes in their hypercharge assignments when we take Y to be one of the �ve Yi.

Although there are always a few irreps with the right hypercharges, there are never enough.

As suggested by the discussion in Section 2, the origin of bizarre hypercharges with respect to

the SU(5) embeddings Yi is due to the fact that twisted states generically have E8�E8 weights on

a shifted lattice, as is apparent in (2.72). To further understand these matters, we now discuss the

decomposition of the two lowest lying E8 representations, of dimension 248 and 3875 respectively.

The decomposition of these irreps under E8 � SU(5) is tabulated, for instance, in the review by

Slansky [18]. We identify this SU(5) as the subgroup of E8 in which irreps of GSM are embedded.

The decompositions are (numbers in parentheses denote SU(5) irreps)

248 = 24(1) + (24) + 10(5 + 5) + 5(10 + 10);

3875 = 100(1) + 65(5 + 5) + 50(10 + 10) + 5(15 + 15) + 25(24) + 5(40 + 40)

+ 10(45 + 45) + (75): (4.31)
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Although these are real representations, a chiral four-dimensional theory is obtained by compacti-

�cation on a quotient manifold (i.e., the Z3 orbifold), a mechanism pointed out some time ago [36].

Also from Slansky, we take the decomposition of the SU(5) irreps shown in (4.31) with respect to

SU(5) � SU(3)� SU(2)� U(1), with the standard electroweak normalization for the U(1) charge

given in the last entry:

1 = (1; 1; 0)

5 = (1; 2; 1=2) + (3; 1;�1=3)
10 = (1; 1; 1) + (�3; 1;�2=3) + (3; 2; 1=6)

15 = (1; 3; 1) + (3; 2; 1=6) + (6; 1;�2=3)
24 = (1; 1; 0) + (1; 3; 0) + (3; 2;�5=6) + (�3; 2; 5=6) + (8; 1; 0)

40 = (1; 2;�3=2) + (3; 2; 1=6) + (�3; 1;�2=3) + (�3; 3;�2=3) + (8; 1; 1) + (�6; 2; 1=6)

45 = (1; 2; 1=2) + (3; 1;�1=3) + (3; 3;�1=3) + (�3; 1; 4=3) + (�3; 2;�7=6)
+ (�6; 1;�1=3) + (8; 2; 1=2)

75 = (1; 1; 0) + (3; 1; 5=3) + (�3; 1;�5=3) + (3; 2;�5=6) + (�3; 2; 5=6)

+ (6; 2; 5=6) + (�6; 2;�5=6) + (8; 1; 0) + (8; 3; 0) (4.32)

While the higher dimensional SU(5) irreps certainly contain states with unusual hypercharge (e.g.,

the (1; 2) irrep in the 40 of SU(5) with Y = �3=2), given the number of 5, �5 and 10 representations
present in (4.31) it is perhaps surprising that we do not obtain the SU(3) � SU(2) � U(1) irreps

to �ll out the MSSM for any of the 175 models.

Beside the projections (2.66,2.67) in the untwisted sector|which lead to incomplete would-be

SU(5) irreps as discussed in detail above|the problem, of course, is that in the twisted sectors

the E8 � E8 weights do not correspond to the decomposition of E8 representations described by

(4.31,4.32). The weights are of the form ~K = K + E(n1; n3; n5); whereas K 2 �E8�E8 , for any

twisted sector with solutions to (2.72) the embedding vector is a strict fraction of a lattice vector:

3E(n1; n3; n5) 2 �E8�E8 ; E(n1; n3; n5) 62 �E8�E8 : (4.33)

Specializing (2.73), the hypercharge for any of the Yi is given by

Yi( ~K ;n1; n3; n5) = yi �K + Æyi(n1; n3; n5); Æyi(n1; n3; n5) = yi �E(n1; n3; n5): (4.34)

For a massless state, the value of yi �K will take values corresponding to the decompositions (4.32);

yi �K values from the 3875 of E8 occur because K
2 > 2 is possible, as discussed in Section 2. The

second term on the right-hand side is the Wen-Witten defect, briey discussed above in Section 2.

Since each yi is nonzero only in the �rst eight entries, the Wen-Witten defect only depends on

the observable sector embeddings enumerated by CMM. It is easy to check that for each of the yi
the defect in each twisted sector is a multiple of 1=3. This is consistent with general arguments

[62, 63] which show that fractionally charged color singlet (bound) states in ZN orbifolds have

electric charges which are quantized in units of 1=N .

4.4 Extended Hypercharge Embeddings

Having failed to accommodate the MSSM with any of the �ve Yi, we envision the most general

hypercharge consistent with leaving at least a hidden SU(3)0 unbroken to serve as the condensing
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group GC . (Such a Y is of the extended hypercharge embedding variety, studied for example in

Ref. [64].) That is, we include the possibility that Cartan generators of the nonabelian hidden

sector group mix into Y under a Higgs e�ect, perhaps induced by the FI term. (A well-known

example of the mixing of a nonabelian Cartan generator into a surviving U(1) is the electroweak

symmetry breaking SU(2)L � U(1)Y ! U(1)E .) Thus, we assume a hypercharge generator of the

form

6Y =
X
a6=X

caQa +
X
a;i

ciaH
i
a: (4.35)

A factor of six has been included for later convenience. The Cartan generators written here are not

those of (2.58) or (4.18). Rather, we choose a basis where the Hi
a are mutually orthogonal (i.e.,

trR Hi
aH

j
a = 0 for i 6= j, any irrep R of Ga).

Nontrivial irreps of the hidden sector gauge groupGH may decompose under the partial breaking

of GH implied by (4.35) to give some of the (1; 2) and (1; 1) irreps of the MSSM. For instance, if

the pattern of gauge symmetry breaking in an irrep Pattern 2.5 model is

SU(3)C � SU(2)L � SU(5)� SU(2)0 � U(1)8 ! SU(3)C � SU(2)L � SU(3)0 � U(1)Y ; (4.36)

then we have the following decompositions of nontrivial irreps of GH onto the surviving gauge

symmetry group:

(1; 1; 5; 1) ! (1; 1; 3) + 2(1; 1; 1);

(1; 1; 10; 1) ! 2(1; 1; 3) + (1; 1; �3) + (1; 1; 1);

(1; 2; 1; 2) ! 2(1; 2; 1): (4.37)

Thus, we get many candidates for ec as well as candidates for L;Hd or Hu. The Cartan generator

of SU(2)0 is allowed to mix into Y ; this is also true of the two Cartan generators of SU(5) which

commute with all of the generators of the surviving GC = SU(3)0. The weights of the (1; 2; 1) and

(1; 1; 1) states in (4.37) with respect to these generators then contribute to the hypercharges of

these states.

Corresponding to (4.35) is an assumption for the sixteen-vector y which describes the linear

combination of E8 �E8 Cartan generators HI which give Y :

6y =
X
a6=X

caqa +
X
a;i

ciah
i
a: (4.38)

To calculate kY , we use Eq. (4.12) and the orthogonality of the sixteen-vectors appearing in (4.38):

kY =
1
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0
@X
a6=X

c2aka +
X
a;i

2(ciah
i
a)
2

1
A : (4.39)

We de�ne, as above, Ĥi
a to be the generatorH

i
a rescaled to the uni�ed normalization (e.g., tr (Ĥ

i
a)
2 =

1=2 for an SU(N) fundamental irrep). We express the rescaling by Hi
a =

q
kiaĤ

i
a. Then in terms

of the sixteen-vectors associated with these generators, using Eq. (4.11),

2(hia)
2 = 2kia(ĥ

i
a)
2 = kia: (4.40)
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Thus, the hypercharge normalization may be expressed as

kY =
1

36

0
@X
a6=X

c2aka +
X
a;i

(cia)
2kia

1
A : (4.41)

Eq. (4.41) gives kY as a quadratic form of the real coeÆcients ca and c
i
a, a function which is easy

to minimize subject to the linear constraints imposed by demanding that the seven types of chiral

supermultiplets in the MSSM (Q;uc; dc; L;Hd;Hu; e
c) be accommodated, including hypercharges.

(For instance, we used standard routines available on the math package Maple.) We have performed

an automated analysis to determine the minimum ÆkY � kY � 5=3 values allowed by each model,

for each possible assignment of the MSSM to the full pseudo-massless spectrum. Our results are

shown in Table V.

Pattern ÆkminY Pattern ÆkminY Pattern ÆkminY Pattern ÆkminY

1.1 0 2.4 8/29 3.3 -4/61 4.4 16/61

1.2 1/5 2.5 11/73 3.4 16/59 4.5 -1/31

2.1 4/29 2.6 4/11 4.1 -8/113 4.6 11/73

2.2 -8/167 3.1 1/7 4.2 -8/113 4.7 -1/31

2.3 0 3.2 -8/119 4.3 8/81 4.8 14/5

Table V: Minimum values of ÆkY = kY � 5=3.

It can be seen from the table that kY = 5=3 is possible in some patterns. We remark, however,

that this value has lost most of its motivation in the present context. Whereas in a GUT the

normalization kY = 5=3 came out naturally, we now obtain this value by arti�ce, choosing a \just

so" linear combination of observable and hidden sector generators. Perhaps this is to be expected,

since SU(3)C�SU(2)L was obtained from the start at the string scale, without ever being|properly

speaking|embedded into a GUT.

For some of the assignments of Q;uc; dc; L;Hd;Hu; e
c to the pseudo-massless spectrum, other

states in the spectrum may have the right charges with respect to SU(3)C � SU(2)L � U(1)Y to

also be candidates for some of these MSSM states. In this case, the MSSM states will generally

be a mixture of all the candidate states from the pseudo-massless spectrum, as described above in

Section 3. An example of this will be seen in the following section. This, however, does not alter

our conclusions for the coeÆcients ca and c
i
a, as well as the hypercharge normalization kY .

5 Example: BSLA 6.5

The model labeling here is the same as described in Section 3: the observable embedding

is CMM 6 from Table I of Ref. [24] and the hidden sector embedding is No. 5 from Table VI of

Ref. [24]. Thus, the model has embedding

3V = (�1;�1; 0; 0; 0; 2; 0; 0; 2; 1; 1; 0; 0; 0; 0; 0);
3a1 = (1; 1;�1;�1;�1; 2; 1; 0;�1; 0; 0; 1; 0; 0; 0; 0);
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3a3 = (0; 0; 0; 0; 0; 1; 1; 2; 2; 0; 0;�1; 1; 0; 0; 0): (5.1)

(Recall that a5 � 0 in the class of models studied here.) Using the recipes of Section 2, it is easy

to determine the simple roots and to check that the unbroken gauge group is

G = SU(3)C � SU(2)L � SU(5)� SU(2)0 � U(1)8: (5.2)

The untwisted sector pseudo-massless matter states are also obtained by simple calculations; the

twisted sectors are somewhat tedious because of the large number of states involved. The full spec-

trum of pseudo-massless matter states is given in Table XIV (Appendix B). Each entry corresponds

to a species of chiral matter multiplets, with three families to each species. We have assigned la-

bels 1 through 51 to the species for convenience of reference in the discussion which follows. The

irrep of each species with respect to the nonabelian factors of G is given in the second column of

Table XIV, with the order of entries corresponding to the order of the nonabelian factors in (5.2).

It is not hard to check that the model falls into Pattern 2.6 of Table IX. This pattern has the

attractive feature that it contains only three extra (3 + �3; 1) representations. Thus, we can expect

less �nagling with at directions to arrange masses for these exotic isosinglet quarks. The subscript

on the Irrep column data denotes the sector to which a species belongs: \U" is for untwisted, while

for the twisted species, n1; n3 pairs of �xed point labels are given. The n5 �xed point label now

serves as a family index, so that for each twisted species, it takes on all three values n5 = 0;�1.
Twisted oscillator matter states do not occur in the pseudo-massless spectrum of this model. The

remainder of the columns in Table XIV provide information about U(1) charges.

As discussed in Section 2, the eight U(1) generators correspond to sixteen-dimensional vectors

qa which are orthogonal to the simple roots and to each other. It is not hard to determine a set of

eight qas. However, once the pseudo-massless spectrum of matter states has been calculated using

the recipes of Section 2, one �nds that a naive choice of the qas does not isolate the trace anomaly to

a single U(1). Using the rede�nition technique described in Section 2, we have isolated the anomaly

to the eighth generator, which we denote QX . Unfortunately, the rede�nitions required to do this,

while maintaining orthogonality of the qas, lead to large entries for many of the qas when the charges

of states are kept integral. We display our choice of qas in Table VI, along with ka (determined by

Eq. (4.12)) and tr Qa (determined from the pseudo-massless spectrum). We note that q1=6 = y1
of (4.13). States 27 and 42 would be electrically neutral exotic isoscalar quarks if we took Q1=6

as hypercharge. This provides an explicit example of the e�ects of charge fractionalization; in the

low energy theory these states would bind with ordinary quarks to form fractionally charged color

singlet composite states.

For �elds which are not QX neutral, we see from Table XIV that jQX j has minimum value 1

and maximum value 6. On the other hand, from Table VI we see that kX = 84. Then the generator

with uni�ed normalization is Q̂X = QX=
p
84 and for �elds which are not Q̂X neutral, jQ̂X j has

minimum value 1=
p
84 � 0:11 and maximum value 6=

p
84 � 0:65. We appealed to this range in

Section 3 above.

Finally, we note that the SU(5) charged states in the model consist of

3 [ (1; 1; 5; 1) + 3(1; 1; �5; 1) + (1; 1; 10; 2) ]: (5.3)

Using C(SU(5)) = 5, X(5) = X(�5) = 1=2, and X(10) = 3=2 (apparent from (4.32) taking tr T aT a
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a qa tr Qa ka=4

1 (�3;�3; 2; 2; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0) 0 15

2 3(�1;�1;�1;�1;�1; 15; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0) 0 1035

3 3(3; 3; 3; 3; 3; 1;�46; 0; 0; 0; 0; 0; 0; 0; 0; 0) 0 9729

4 3
2(�3;�3;�3;�3;�3;�1;�1;�47; 0; 0; 0; 0; 0; 0; 0; 0) 0 2538

5 3
2
(�15;�15;�15;�15;�15;�5;�5; 5; 12;�12;�12;�48;�12; 0; 0; 0) 0 4590

6 1
2(�15;�15;�15;�15;�15;�5;�5; 5;�22;�12;�12; 20; 22; 0; 0; 0) 0 357

7 3(0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 0) 0 9

X 1
2(�3;�3;�3;�3;�3;�1;�1; 1; 4; 6; 6; 4;�4; 0; 0; 0) 504 21

Table VI: Charge generators of BSLA 6.5 (cf. (2.54)).

with respect to a generator of an SU(3) subgroup of SU(5)), we �nd that

btot5 = �3 � 5 + 3(4 � 1=2 + 2 � 3=2) = 0: (5.4)

Thus, in order to have supersymmetry broken by gaugino condensation in the hidden sector, it is

necessary that vector masses be given to some of the states in (5.3). If we can arrange to give large

masses to the 3(5 + �5) vector pairs, then the e�ective � function coeÆcient is only b5 = �3. This
gives a lower �C than the pure GC = SU(2) case (bC = �6) which was regarded as \marginal" in

the Introduction. Consequently, the hidden SU(5) must be broken to a subgroup so that vevs can

be given to components of the (�5 � �5 � 10) and (5 � 10 � 10) invariants, allowing more states to get

large masses. (For the SU(5) invariant (�5 � �5 � 10) to generate an e�ective mass term, the hidden

SU(2)0 would also have to be broken since the 10s belong to doublet representations of SU(2)0, as

is evident from Eq. (5.3).)

As an example, consider breaking SU(5) ! SU(4). For many choices of the hypercharge

generator, some (but generally not all) of the 5 and �5 irreps are hypercharge neutral. Decomposing

these onto SU(4) irreps, we have 5 = 4 + 1 and �5 = �4 + 1. The breaking can be achieved by

giving vevs to the SU(4) singlets in these decompositions, though one should be careful to avoid

generating non-vanishing F- or D-terms in the process. The 10 of SU(5) decomposes according to

10 = 4+6. The invariants mentioned above may generate masses for many of the nontrivial SU(4)

irreps, since under the SU(5) � SU(4) decomposition

(5 � �5) 3 (4 � �4); (�5 � �5 � 10) 3 (1 � �4 � 4); (5 � 10 � 10) 3 (1 � 6 � 6): (5.5)

It is conceivable that all of the SU(4) charged matter may be given O(�X) masses in this way,

yielding b4 = �12. If some matter remains light and SU(4) is identi�ed as the condensing groupGC ,

values in the range �12 < bC � �6 could be obtained. To say whether or not these arrangements

can actually be made requires an analysis of D- and F-at directions which is beyond the scope of

the present work.
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5.1 Accomodating the MSSM

Inspection of Table XIV shows that while appropriate SU(3)C � SU(2)L charged multiplets are

present to accommodate the MSSM spectrum, the \obvious" choice for hypercharge, Y1 = Q1=6,

does not provide for the three ec supermultiplets nor does it provide enough (1; 2) representations

with hypercharge �1=2 to accommodate three Ls and an Hd. As discussed above, one problem is

that most of the twisted states have bizarre Y1 charges due to the Wen-Witten defect. We also have

the problem that ~K2 = 4=3 for twisted (non-oscillator) states (versusK2 = 2 for untwisted), so that

the E8�E8 weights are \smaller" and it is harder to obtain the \large" e
c hypercharge; this explains

why kY > 5=3 is generically required. Note that the Y1 charges are ordinary in the untwisted sector:

the hidden irreps (1; 1; 10; 2) and (1; 1; 5; 1) are Y1 neutral while the observable irreps (3; 2; 1; 1),

(1; 2; 1; 1) and (�3; 1; 1; 1) have Y1 charges 1=6, 1=2 and �2=3 respectively. Furthermore, if we

subtract o� the Wen-Witten defect, we expect Y1 charges which would appear in the decompositions

(4.32) for twisted states. With this in mind, we de�ne Z charge to be Z = Y1 for untwisted states

while for twisted states

Z(n1; n3; n5) � Y1 � y1 � E(n1; n3; n5) =
Q1

6
� 1

3
+ n1

2

3
; (5.6)

where the last equality is easy to check using the embedding vectors (5.1). The Z charges are given

in Table XIV. To see that these charges are ordinary, one should compare to the decompositions

(4.31,4.32). Checking the Z charges and SU(3) � SU(2) irrep labels from Table XIV, it can be

seen that all are in correspondence to some irrep contained in a decomposition of the 248 and 3875

irreps of E8. An example of the role of the 3875 irrep can be seen in state 11 of Table XIV, which

is a (1; 2) irrep of SU(3)C �SU(2)L with Z charge �3=2; from (4.32) we see that this occurs in the

40 of SU(5), which itself occurs in the 3875 but not the 248 of E8. This shows how it is precisely

the peculiar role of higher dimensional E8�E8 irreps and the shift E(n1; n3; n5) that is responsible

for the bizarre Y1 charges in the twisted sectors.

Thus, we are forced to assume hypercharge of the more general form (4.35), which in the present

case we write as

6Y = c1Q1 + � � �+ c7Q7 + c8H(20) + c9H
1
(5) + c10H

2
(5): (5.7)

The generator H(20) is the Cartan element for the hidden SU(2)0, which we take to be

H(20) = diag (1;�1) (5.8)

in the fundamental irrep. The generators H1
(5);H

2
(5) are the two Cartan elements for the hidden

SU(5) which could combine into hypercharge while still leaving unbroken a hidden SU(3)0 for the

condensing group GC , as explained in Section 4. We take them to be given by

H1
(5) = diag (4;�1;�1;�1;�1); H2

(5) = diag (0; 3;�1;�1;�1); (5.9)

for the fundamental representation. We seek solutions c1; : : : ; c10 which allow for the accommo-

dation of the MSSM. As mentioned in Section 4, assigning the MSSM amounts to the imposition

of seven linear constraints on the coeÆcients ci, one for each of the species Q;uc; dc; L;Hd;Hu; e
c.

Because of the enormous number of species to which L;Hd;Hu and ec could be assigned, a very
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large number of assignments accommodate the MSSM. However, it is also important to consider

the hypercharge normalization kY . From the discussion given in Section 4, we know that

kY =
1

36
(c21k1 + � � �+ c210k10); (5.10)

with k1; : : : ; k7 given in Table VI, and where k8; k9; k10 depend on the normalization of the hidden

SU(2)0 � SU(5) Cartan generators (5.8,5.9). It is easy to see that the generators (5.8,5.9) have

been rescaled from the uni�ed normalization according to

H(20) =
p
k8Ĥ(20); H1

(5) =
p
k9Ĥ

1
(5); H2

(5) =
p
k10Ĥ

2
(5);

k8 = 4; k9 = 40; k10 = 24: (5.11)

We have investigated the range of kY that is allowed in BSLA 6.5, consistent with assignment

of the MSSM spectrum to the model. This is not a diÆcult exercise. We �rst obtain seven linear

constraint equations on the cis from a given assignment of the seven types of �elds in the MSSM.

We use these constraint equations to rewrite (5.10) in terms of a set of independent cis. The

result is a quadratic form kY depending on the independent cis. We minimize this quadratic form

subject to the constraint of real ci using a standard algorithm provided with the math package

Maple. We have veri�ed the automated results by hand in a few sample cases and �nd agreement.

An exhaustive analysis of all possible assignments of the MSSM to the BSLA 6.5 spectrum shows

that in every case kY > 5=3, consistent with Table V (Pattern 2.6). As above, it is convenient to

de�ne ÆkY = kY � 5=3. We �nd that constraining ÆkY � 2 still gives 274 possible assignments. A

manageable set is obtained if we impose the limit ÆkY � 1. The only possible assignments in this

case are given in Table VII. We also give the minimum value ÆkminY for each of the assignments.

For the cases where ÆkminY = 4=11 or ÆkminY = 1=2, some of the MSSM states have been assigned

to (1; 2; 1; 2) irreps, which are each e�ectively two (1; 2; 1) irreps when the hidden SU(2)0 is broken

to give an e�ective nonabelian gauge symmetry group SU(3) � SU(2) � SU(5). None of the

assignments in Table VII require breaking the hidden SU(5) to provide the ec species or SU(5)

Cartan generators contributing to Y ; that is, each of these assignments has c9 = c10 = 0 for the

minimum value ÆkminY . These two coeÆcients are independent parameters for any of the assignments

in Table VII and could be made nonzero without a�ecting the Y values of the MSSM spectrum;

however, this would alter the Y charges of SU(5) charged states and would increase ÆkY above

the minimum value ÆkminY . In principle, kY could be made arbitrarily large! Subscripts on species

labels in Table VII denote which of the two H(20) eigenstates the MSSM state has been assigned to.

For instance, in the ÆkminY = 1=2 assignments, 301 and 302 are states of opposite SU(2)
0 isospin.

With these assignments and ÆkY set to its minimum value ÆkminY , the coeÆcients ci in (5.7) are

uniquely determined for each case; examples are:

Assign: 1 : (c1; : : : ; c10) = (1; 3=253; 1=11891;�4=517; 0; 0; 2=11;�18=11; 0; 0);
Assign: 9 : (c1; : : : ; c10) = (2=5; 1=10; 0; 0; 1=68;�3=68; 3=4; 0; 0; 0);
Assign: 11 : (c1; : : : ; c10) = (1;�6=115;�2=5405; 8=235; 0; 0; 2=5; 0; 0; 0):

(5.12)

From these one can calculate the hypercharges of the pseudo-massless spectrum, using the Qa values

and SU(2)0 irrep data provided in Table XIV. As an example, we have calculated the hypercharges

of the spectrum for Assignment 11. These are tabulated in the last column of Table XIV.
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No: Q; uc; dc; L;Hd;Hu; e
c ÆkminY No: Q; uc; dc; L;Hd;Hu; e

c ÆkminY

1 1; 3; 10; 11; 301 ; 2; 482 4=11 10 1; 3; 42; 301 ; 302; 2; 29 1=2

2 1; 3; 10; 25; 301 ; 2; 332 4=11 11 1; 3; 10; 11; 25; 2; 43 4=5

3 1; 3; 10; 301 ; 31; 2; 282 4=11 12 1; 3; 10; 11; 31; 2; 49 4=5

4 1; 3; 10; 301 ; 44; 2; 162 4=11 13 1; 3; 10; 25; 44; 2; 34 4=5

5 1; 3; 42; 11; 301 ; 2; 482 4=11 14 1; 3; 10; 31; 44; 2; 23 4=5

6 1; 3; 42; 25; 301 ; 2; 332 4=11 15 1; 3; 42; 11; 25; 2; 35 4=5

7 1; 3; 42; 301 ; 31; 2; 282 4=11 16 1; 3; 42; 11; 31; 2; 24 4=5

8 1; 3; 42; 301 ; 44; 2; 162 4=11 17 1; 3; 42; 25; 44; 2; 9 4=5

9 1; 3; 10; 301 ; 302; 2; 29 1=2 18 1; 3; 42; 31; 44; 2; 17 4=5

Table VII: Assignments satisfying ÆkY � 1 in BSLA 6.5. Underlining on Hd and L indicates
that either permutation may be assigned to the fourth and �fth entries. Where applicable, the
subscript on a state label denotes which of the two H(20) eigenstates of a (1; 2; 1; 2) irrep is used in
an assignment.

For all of the ÆkminY = 4=5 cases, the SU(3)C � SU(2)L charged exotic matter is

3 [ (3; 1; 1=15)+(�3; 1;�1=15)+2(1; 2; 1=10)+2(1; 2;�1=10) ]+2 [ (1; 2; 1=2)+(1; 2;�1=2) ]: (5.13)
The last number in each term gives the hypercharge of the corresponding state. We refer to the

SU(3)C charged states as exoquarks and to the SU(2)L charged states as exoleptons. The last

four exolepton states correspond to the two extra families of Hu-like and Hd-like states which are

an artifact of the three generation construction. However, the other exoleptons have Y = �1=10,
a rather bizarre value, and certainly not one that appears in GUT scenarios, as can be seen by

comparison to (4.32). Here again we see the e�ect of charge fractionalization. Similar comments

apply to the exoquarks which have Y = �1=15.
For all of the ÆkminY = 1=2 assignments, the SU(3)C � SU(2)L charged exotic matter is

3 [ (3; 1;�1=3) + (�3; 1; 1=3) + 4(1; 2; 0) ] + 2 [ (1; 2; 1=2) + (1; 2;�1=2) ]: (5.14)

The exoquarks in these assignments have SM charges of the colored Higgs �elds in an SU(5) GUT.

Whether or not their masses are similarly constrained by proton decay depends on a detailed

study of the allowed e�ective superpotential couplings along a given at direction, since we do

not have the SU(5) symmetry to relate Yukawa couplings. Since altogether we have six (�3; 1; 1=3)

representations, each of the three dc-type quarks and their three exoquark relatives will generally

be a mixture of States 10 and 42, corresponding to a cross between Assignments 9 and 10. Such

mixing was discussed above in Section 3.

For all of the ÆkminY = 4=11 assignments, the SU(3)C � SU(2)L charged exotic matter is

3 [ (3; 1;�2=33) + (�3; 1; 2=33) + (1; 2; 1=22) + 2(1; 2;�3=22) + (1; 2; 5=22) ]

+2 [ (1; 2; 1=2) + (1; 2;�1=2) ]: (5.15)
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Note that a portion of the exolepton spectrum is chiral and would lead to a massless states if the

usual electroweak symmetry breaking is assumed. For this reason the Assignments 1-8 are not

viable.

5.2 Gauge Coupling Uni�cation

Gauge coupling uni�cation in semi-realistic four-dimensional string models has been a topic of

intense research for several years. The situation in the heterotic theory has been reviewed by

Dienes in Ref. [61], which contains a thorough discussion and extensive references to the original

articles. We will only present a brief overview; the interested reader is recommended to Dienes'

review for further details.

It has been known since the earliest attempts [65] to use closed string theories as uni�ed \theories

of everything" that

g2 � �2=�0; (5.16)

where g is the gauge coupling, � is the gravitational coupling and �0 is the Regge slope, related to

the string scale by �string � 1=
p
�0. In particular, this relation holds for the heterotic string [1].

However, g and � in (5.16) are the ten-dimensional couplings. By dimensional reduction of the

ten-dimensional e�ective �eld theory obtained from the ten-dimensional heterotic string in the zero

slope limit, the relation (5.16) may be translated into a constraint relating the heterotic string

scale �H to the four-dimensional Planck mass mP . One �nds, as expected on dimensional grounds,

mP � 1=
p
�, where the coeÆcients which have been supressed depend on the size of the six compact

dimensions; similarly, the four-dimensional gauge coupling satis�es gH � g; for details see Ref. [66].

Then (5.16) gives

�H � gHmP : (5.17)

Kaplunovsky has made this relation more precise, including one loop e�ects from heavy string states

[42]. Subject to various conventions described in [42], including a choice of the DR renormalization

scheme in the e�ective �eld theory, the result is:

�H � 0:216 � gHmP = gH � 5:27 � 1017 GeV : (5.18)

In (5.18), a single gauge coupling, gH , is shown. However, in the heterotic orbifolds under

consideration the gauge group G has several factors, each of which will have its own running gauge

coupling. One may ask how these running couplings are related to gH . This question was studied by

Ginsparg [58], with the result that the running couplings unify to a common value gH at the string

scale �H , up to string threshold e�ects and aÆne levels (discussed below). (In the case of U(1)s,

normalization conventions must be accounted for, as we have described in detail in Section 4.)

Speci�cally, uni�cation in four-dimensional string models makes the following requirements on the

running gauge couplings ga(�):

kag
2
a(�H) = g2H ; 8 a: (5.19)

Here, ka for a nonabelian factor Ga is the aÆne or Kac-Moody level of the current algebra in the

underlying theory which is responsible for the gauge symmetry in the e�ective �eld theory. It is

unnecessary for us to trouble ourselves with a detailed explanation of this quantity or its string

theoretic origins, since ka = 1 for any nonabelian factor in the heterotic orbifolds we are considering.
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For this reason, these heterotic orbifolds are referred to as aÆne level one constructions. In the case

of Ga a U(1) factor, ka carries information about the normalization of the corresponding current

in the underlying theory, and hence the normalization of the charge generator in the e�ective �eld

theory. We saw explicit examples of this in the previous section.

The important point, which has been emphasized many times before, is that a gauge coupling

uni�cation prediction is made by the underlying string theory. The SM gauge couplings are known

(to varying levels of accuracy), say, at the Z scale (approximately 91 GeV). Given the particle

content and mass spectrum of the theory between the Z scale and the string scale, one can easily

check at the one loop level whether or not the uni�cation prediction is approximately consistent

with the Z scale boundary values. To go beyond one loop requires some knowledge of the other

couplings in the theory, and the analysis becomes much more complicated. However, the one loop

success is not typically spoiled by two loop corrections, but rather requires a slight adjustment of

exible parameters (such as superpartner masses) which enter the one loop analysis.

In what follows we briey discuss the one loop running of SM gauge couplings in BSLA 6.5,

Assignment 11 of Table VII, estimating two loop e�ects using previous studies of the MSSM. Due to

the presence of exotic matter, we are able to achieve string scale uni�cation. This sort of uni�cation

scenario has been studied many times before, for example in Refs. [67, 68, 69, 70]. However, in

contrast to the Refs. [67, 69, 70], we have states which would not appear in decompositions of

standard GUT groups, such as (4.32). Indeed, it was found by Gaillard and Xiu in Ref. [67] that

(3 + �3; 2) representations with hypercharge Y = �1=6 were necessary to string scale uni�cation,

while Faraggi achieved string uni�cation in Ref. [68] in a model where the only colored exotics were

(3 + �3; 1) states. The resolution of this apparent conict is that the uni�cation scenario of Faraggi

contains (1; 2) exoleptons with vanishing hypercharge and (3 + �3; 1) exoquarks with hypercharge

Y = �1=6; such states have exotic electric charge and do not appear in (4.32). The appearance

of these states is due to the Wen-Witten defect in the free fermionic construction used in the

model of Ref. [68], which has a Z2 � Z2 orbifold underlying it, leading to shifts in hypercharge

values by integer multiples of 1=2. Because exotics with small hypercharge values, much like the

(3 + �3; 2) representations used by Gaillard and Xiu, appear in the model employed by Faraggi, the

SU(3)�SU(2) running can be altered to unify at the string scale without having an overwhelming

modi�cation on the running of the U(1)Y coupling.

Similar to the uni�cation scenario of Faraggi, in the model studied here exotic representations

with small hypercharges are present and allow us to unify at the string scale without the presence

of exotic quark doublets. However, we also have nonstandard hypercharge normalization: for

Assignment 11 the minimum value is kY = 37=15 > 5=3. Nonstandard hypercharge normalization

has been studied previously, for example in Refs. [71, 59]. In these analyses, it was found that

lower values kY < 5=3 were preferred if only the MSSM spectrum is present up to the uni�cation

scale; the preferred values were between 1:4 to 1:5. Unfortunately, we are faced with the opposite

e�ect|a larger than normal kY = 37=15. This larger value requires a larger correction to the

running from the exotic states, and has the e�ect of pushing down the required mass scale of the

exotics from what was found in Faraggi's analysis|particularly in the case of the exoquarks.

Standard evolution of the gauge couplings from the Z scale (i.e., the solution to (1.3) for groups
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other than GC), together with the uni�cation prediction (5.19), leads to three constraint equations:

4���1H =
1

kY

"
4���1Y (mZ)� bY ln

�2
H

m2
Z

��Y

#
; (5.20)

4���1H = 4���1a (mZ)� ba ln
�2
H

m2
Z

��a; a = 2; 3: (5.21)

The notation is conventional, with �a = g2a=4� (a = H;Y; 2; 3). Corrections are captured by the

quantities �a, and will be discussed below. The quantities ba; a = Y; 2; 3 are the � function

coeÆcients

ba = �3C(Ga) +
X
R

Xa(R) (5.22)

evaluated for the MSSM spectrum. Here, C(SU(N)) = N while C(U(1)) = 0. For a fundamental

or antifundamental representation of SU(N) we have Xa = 1=2 while for hypercharge XY (R) =

Y 2(R). This gives

bY = 11; b2 = 1; b3 = �3: (5.23)

Throughout, we use Z scale boundary values from the Particle Data Group 2000 review [25],

which are given in the MS scheme. For a supersymmetric running, these boundary values should be

converted to the DR scheme, so that the supersymmetry algebra is kept four-dimensional [72, 73].

These scheme conversion e�ects are included in the corrections �a. Due to very small errors

(relative to other uncertainties in the analysis), we take as precise

mZ = 91:19GeV; ��1e (mZ) = 127:9: (5.24)

For the other couplings we utilize global �ts to experimental data [25]:

sin2 �W (mZ) = 0:23117 � 0:00016; �3(mZ) = 0:1192 � 0:0028: (5.25)

Using

��12 = ��1e sin2 �W ; ��1Y = ��1e cos2 �W ; (5.26)

we obtain the boundary values

��1Y (mZ) = 98:333 � 0:020; ��12 (mZ) = 29:567 � 0:020; ��13 (mZ) = 8:39 � 0:20: (5.27)

We now discuss the various corrections contributing to �a (a = Y; 2; 3). Each may be written

as the sum of six terms:

�a = �conv
a +�HL

a +�string
a +�light

a +�exotic
a +�heavy

a : (5.28)

The quantities �conv
a convert the MS renormalization scheme input values (5.27) to the DR

scheme [73, 57]. They are given by:

�conv
a =

1

3
C(Ga) ) �conv

Y = 0; �conv
2 = 2=3; �conv

3 = 1: (5.29)

As will be seen below, these corrections are negligible in comparison to the other terms in �a, and

we could ignore them without changing our results in a meaningful way.
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The quantities �HL
a represent corrections from higher loop orders, which are sensitive to Yukawa

couplings for the MSSM spectrum and the exotic states. If either the top or bottom Yukawa coupling

evolves to nonperturbative values somewhere between Z scale and the string scale (as can happen

for small or very large values of the ratio of MSSM Higgs vevs, tan �), the �HL
a correction is out

of control. However, if the Yukawa couplings arise from a weakly coupled heterotic string theory,

as we assume, then this does not occur; �HL
a will take more reasonable values. For example,

Dienes, Faraggi and March-Russell [59] have studied the range of MSSM two loop corrections with

the Yukawa couplings taking values �t(mZ) � 1:1 and �b(mZ) � 0:175. (Using mb(mZ) � 3:0

GeV from Ref. [74] and mt(mZ) � 174 GeV from [25], these Yukawa couplings correspond to

tan� � 9:2.) These authors found that the two loop (TL) correction terms took approximate

values

�TL
Y � 11:6; �TL

2 � 12:3; �TL
3 � 6:0: (5.30)

These should dominate �HL
a , so we assume that to the same level of approximation �HL

a �
�TL
a ; 8 a = Y; 2; 3: Relative to the boundary values for 4���1a , these are 0.9%, 3.3% and 5.7%

corrections, respectively. By comparison, the largest experimental error is 2.4% for ��13 .

The third type of correction is peculiar to uni�ed theories with large numbers of gauge-charged

states above or near the uni�cation scale. These e�ects have been extensively studied [75] in

GUTs. In attempts to bring uni�cation predictions into good agreement with precision data these

corrections play an important role [57]. When very large GUT group representations are introduced

near the uni�cation scale, these corrections can be considerable [76]. With the standard-like string

constructions which we study here, a GUT symmetry group and heavy states which complete GUT

multiplets are not restored at the uni�cation scale. Rather, the chief concern is with threshold

e�ects due to the enormous towers of massive string states. These may be computed from one loop

diagrams in the underlying string theory, using background �eld methods quite similar to those

exploited in ordinary �eld theory [42]. As noted above, in some four-dimensional heterotic theories,

string threshold corrections exist which grow in size as the T-moduli vevs increase [47]. This

corresponds to the large volume limit for the compact dimensions; the potentially large contribution

in this limit can also be understood from the fact that the compacti�cation scale drops below the

string scale and entire excited mass levels of the string enter the running below the string scale.

In any event, such T-moduli dependent string threshold e�ects are irrelevant for the 175 models

studied here, as they do not occur in Z3 orbifold compacti�cations of the heterotic string [47].

However, threshold corrections which do not increase with the vevs of T-moduli must also be

considered. These threshold e�ects have been calculated by Mayr, Nilles and Stieberger [77] for

an example model which is equivalent to one of the 175 studied here. They �nd that the string

threshold e�ects are given by

�string
a = 0:079 btota + 4:41 ka: (5.31)

(Actually, Ref. [77] states that (5.31) is valid with ka = 1. However, starting with the hypercharge

coupling in the uni�ed normalization ��11 = ��1Y =kY , it can be seen from (5.20) that by our

conventions btot1 = btotY =kY and �1 = �Y =kY . Substituting these expressions into (5.31) for a = 1,

and then solving for �string
Y , one �nds that the formula is also valid for a = Y where kY 6= 1.) It

is important to keep in mind that btota is the � function coeÆcient for Ga with the full spectrum

of pseudo-massless states. This includes those states which get �X � �H scale masses when the

vacuum shifts to cancel the FI term. Because of the large number of states with charge under a
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given U(1) factor, the hypercharge correction �string
Y is usually much larger than �string

2 or �string
3 .

The precise values of the coeÆcients in (5.31) will vary from model to model; these must be worked

out by the numerical evaluation of a rather complicated integral, as explained in [77]. However,

Mayr, Nilles and Stieberger analyzed a few other Z3 orbifold models, which do not fall into the

class of models considered here, and found that the threshold corrections di�ered only slightly

from (5.31). This was found to be due to the fact that the leading term in the integrand did not

depend on the embedding. From this we conclude that Eq. (5.31) gives a fair estimate of the string

threshold corrections in all 175 models which we study here.

The hypercharge values of the 51 species must be calculated in order to compute btotY for the

example model. This of course depends on what linear combination (5.7) of generators we take to

be the hypercharge generator Y . As an example we take Assignment 11 from Table VII, which has

(for ÆkY = ÆkminY ) hypercharge normalization kY = 37=15 and hypercharges Y given in Table XIV.

It is easy to check that

btotY = tr Y 2 = 171=5; btot2 = 9; btot3 = 0: (5.32)

Applying (5.31), one �nds

�string
Y � 13:6; �string

2 � 5:1; �string
3 � 4:4; (5.33)

which are comparable to the two loop corrections in (5.30).

Next we discuss one loop threshold corrections for pseudo-massless states which have masses

greater than the Z mass but less than the string scale �H . Heuristically, these corrections may be

understood as follows. At a running scale �, only states with masses less than this scale contribute

signi�cantly to the running of the gauge couplings. Then the more accurate one loop � function

coeÆcients in this regime are calculated using the spectrum of states with masses less than �. If

some of the superpartner states are more massive than �, the � function coeÆcients will not take

the MSSM values given in (5.23). Non-MSSM values for the coeÆcients will also be obtained if

exotic states with masses less than � are present. In (5.20,5.21) we assumed the MSSM values for

the � function coeÆcients. The threshold corrections we now discuss account for the non-MSSM

� function coeÆcients which \should" have been used over regimes where the MSSM was not the

spectrum of states with masses less than �. This simple picture is valid in the DR renormalization

scheme; in other schemes there are modi�cations to the one loop threshold corrections presented

below, as has been recounted for example in [57].

The �rst correction is due to MSSM superpartners to the SM. In the coeÆcients (5.23), we have

implicitly included these particles in the running all the way from the Z scale; however, if they are

more massive than the Z scale, this is not quite right. We introduce \light" threshold corrections

which subtract out the running which should never have been there in the �rst place:

�light
a = �

X
mi>mZ

ba;i ln
m2
i

m2
Z

; (5.34)

where ba;i is the contribution to the MSSM ba coming from the state i of mass mi. Properly

speaking, the top quark and the light scalar Higgs doublet threshold corrections should also be

included in �light
a . The top mass is near enough to the Z mass that the correction is negligibly

small for our purposes; we assume that this is likewise true for the light scalar Higgs doublet.
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Following Langacker and Polonsky [57], one often de�nes e�ective thresholds Ta (a = Y; 2; 3) which

give the same �light
a as (5.34):

�light
a � �(ba � bSMa ) ln

T 2
a

m2
Z

: (5.35)

Here, bSMa are the � function coeÆcients in the SM (which we take to include a light Higgs doublet

and the top quark):

bSMY = 7; bSM2 = �3; bSM3 = �7; ) ba � bSMa = 4; a = Y; 2; 3; (5.36)

where we make use of (5.23). Eq. (5.35) has the interpretation that it gives the equivalent threshold

correction to ��1a if all superpartners contributing to ba had a uniformmass scale Ta. One may study

how the prediction for �3(mZ) in terms of sin
2 �W (mZ) depends on Ta and determine a combination

of the three e�ective thresholds which would give the same e�ect as a uniform superpartner mass

threshold �SUSY [57]:

(bY � b3kY )(b2 � bSM2 ) ln
T2

mZ
� (b2 � b3)(bY � bSMY ) ln

TY

mZ
� (bY � b2kY )(b3 � bSM3 ) ln

T3

mZ

�
h
(bY � b3kY )(b2 � bSM2 )� (b2 � b3)(bY � bSMY )� (bY � b2kY )(b3 � bSM3 )

i
ln
�SUSY

mZ
: (5.37)

From this one can de�ne the single e�ective threshold �SUSY in terms of a geometric average of

superpartner masses [78]. Because of terms of opposite sign in (5.37), it should be clear that �SUSY

can be much lower than the typical superpartner mass, which we denotedMSUSY in the Introduction;

�SUSY
<� mZ is not at all unreasonable, even with the typical superpartner mass MSUSY several

hundred GeV. Furthermore, it should be noted that the formulae for �SUSY given in Refs. [57, 78]

are modi�ed in the present context due to the nonstandard hypercharge normalization, as has been

accounted for in (5.37), which holds generally. (Our bSMa , as given in (5.36), also di�er slightly due

to the inclusion of a light scalar Higgs doublet; however, Eq. (5.37) has been written such that it

is valid in either case.) Lastly, the e�ective threshold �SUSY completely encodes the e�ects of split

thresholds on the �3(mZ) versus sin
2 �W (mZ) prediction, but for other uni�cation predictions, such

as the uni�ed coupling and scale of uni�cation, a �xed value of �SUSY corresponds to many di�erent

outcomes [78]; this is because other uni�cation predictions depend on combinations of the Ta other

than (5.37). In the present context, simply using �SUSY would not cover the full range of gH , �H
and the predictions for intermediate scales where exotic matter thresholds alter the running. An

exhaustive analysis would require scanning over the parameters Ta (a = Y; 2; 3) independently, or

subject to model constraints on the generation of soft masses by supersymmetry breaking. Our

purpose here is simply to demonstrate the possibility of string scale uni�cation with nonstandard

hypercharge normalization and to estimate the order of magnitude required for the exotic scales.

For these purposes it is therefore suÆcient to take �SUSY � Ta (a = Y; 2; 3). Within this universal

scale �SUSY approximation,

�light
a = �4 ln �

2
SUSY

m2
Z

; a = Y; 2; 3: (5.38)

If we limit mZ
<� �SUSY

<� 1 TeV, then

0 >� �light
a

>� �19:2; a = Y; 2; 3: (5.39)
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The second set of mass threshold corrections comes from exotic matter at intermediate scales.

For the sake of simplicity, we assume that exoleptons with mass much less than the string scale

enter the running at a single scale �2. We assume that all the exoquarks enter at a single scale �3.

(Introducing only some of the exoquarks forces �3 to even lower values than we will �nd below,

which are already a bit of a problem given the exotic hypercharges that these exoquarks have.)

The exotic matter threshold corrections can be thought of as due to shifts in the total � function

coeÆcients between �2;3 and the string scale. Since we introduce 3(3 + �3; 1) chiral multiplets qi
and qci at �3, we have

�exotic
3 = 3 ln

�2
H

�2
3

: (5.40)

The shift in the � function coeÆcient for SU(2)L due to extra (1; 2) representations|the exolepton

chiral multiplets `i and `ci introduced at �2|is given by

Æb2 =
X
`i;`

c
i

1

2
: (5.41)

That is, Æb2 is just the number of exolepton pairs `i + `ci . The threshold corrections are

�exotic
2 = Æb2 ln

�2
H

�2
2

: (5.42)

The exoquark and exolepton chiral multiplets also carry hypercharge. We denote the shifts in the

� function coeÆcient for U(1)Y by

ÆbY =
X
qi;q

c
i

(Yi)
2; Æb0Y =

X
`i;`

c
i

(Yi)
2: (5.43)

In this notation the threshold corrections are

�exotic
Y = ÆbY ln

�2
H

�2
3

+ Æb0Y ln
�2
H

�2
2

: (5.44)

Let m;n denote the numbers of exolepton pairs entering the running at �2, where m is the

number of Y = �1=2 exolepton pairs and n is the number of Y = �1=10 exolepton pairs. We then

have

ÆbY =
2

25
; Æb0Y = m+

n

25
; Æb2 = m+ n: (5.45)

For purposes of illustration below, we will study only the case (m;n) = (0; 6), for which

ÆbY =
2

25
; Æb0Y =

6

25
; Æb2 = 6: (5.46)

It is not diÆcult to generalize our results to other (m;n) values.

Finally, there is the spectrum of particles which get masses of order �X when the vacuum shifts

to cancel the FI term. Since �X < �H in BSLA 6.5 (cf. Table II, Pattern 2.6), these can give an

appreciable heavy threshold correction. Corrections of this type have been noted previously; for
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example, in Ref. [46]. We assume that all pseudo-massless states other than the MSSM spectrum

plus exotics associates with �2;3 enter the running at �X , which is convenient because the ratio

ln
�2
H

�2
X

= 2 ln
0:216 � gHmP

0:170 � gHmP
= 0:479 (5.47)

is independent of gH (both �X and �H are proportional to gH); here we use the value for Pattern

2.6 from Table II. Taking into account the exotic matter assumed at intermediate scales �2;3 and

the total � function coeÆcients mentioned above, we have

�heavy
Y = (btotY � bY � ÆbY � Æb0Y ) ln

�2
H

�2
X

= 10:3; (5.48)

�heavy
2 = (btot2 � b2 � Æb2) ln

�2
H

�2
X

= 1:0; �heavy
3 = 0: (5.49)

The hypercharge threshold correction is comparable to the larger corrections discussed above. On

the other hand, we could just as well ignore �heavy
2;3 at the level of approximation made here.

As we tune �2;3 to satisfy the uni�cation constraints, it is convenient to de�ne the sum of all

the corrections except �exotic
a :

�0
a � �a ��exotic

a = �conv
a +�HL

a +�string
a +�light

a +�heavy
a : (5.50)

Using the above estimates for each of the terms, we �nd for the case of �SUSY =mZ

�0
Y � 35:5; �0

2 � 19:1; �0
3 � 11:4: (5.51)

For the case of �SUSY = 1 TeV, the estimate is

�0
Y � 16:3; �0

2 � �0:1; �0
3 � �7:8: (5.52)

We now proceed to study the uni�cation constraint in BSLA 6.5, Assignment 11, subject to the

assumptions described above. For convenience, we de�ne

aH = 4���1H ; da = 4���1a (mZ)��0
a; a = Y; 2; 3; (5.53)

t2 = ln
�2
2

m2
Z

; t3 = ln
�2
3

m2
Z

: (5.54)

Because the string scale �H contains a dependence on gH through (5.18), it will prove convenient

to write

ln

�
�H
mZ

�2
= tP � ln(4���1H ); (5.55)

tP � 2 ln

�
4��H
gHmZ

�
= 2 ln

 
4� � � � 5:27 � 1017

91:19

!
= 77:6 + 2 ln �: (5.56)
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Here we introduce a coeÆcient � which expresses uncertainty in (5.18) described in [42]; we study

10% deviations by taking 0:9 � � � 1:1, leading to tP = 77:6 � 0:2. Eqs. (5.20,5.21) give the

following equations which must be simultaneously satis�ed:

aH = d3 + 3t3 (5.57)

aH = d2 + Æb2 t2 � (1 + Æb2)(tP � lnaH) (5.58)

kY aH = dY + ÆbY t3 + Æb0Y t2 � (11 + ÆbY + Æb0Y )(tP � lnaH) (5.59)

The �rst equation shows the nice feature that since the SU(3)C coupling becomes conformal above

�3, the lnaH dependence is gone and we can solve for aH explicitly. Since this equation does not

depend at all on t2, we obtain aH = aH(d3; t3). Substituting this into the second equation allows

us to solve for t2 explicitly, yielding t2 = t2(d2; d3; t3). Thus, the last equation becomes the only

nontrivial constraint, which is transcendental and must be solved numerically. Through it we can

determine t3 = t3(dY ; d2; d3) after having substituted the expressions for aH and t2 from the �rst

two equations. Taking the values (5.46) for the (m;n) = (0; 6) example, the implicit equation for

t3 is

t3 =
1

540
[75dY � 182d3 � 3d2]�

23

15
[tP � ln(d3 + 3t3)] ; (5.60)

which can easily be solved iteratively. Once t3 is determined, aH is easily obtained from (5.57) and

t2 =
1

6
[aH � d2 + 7(tP � lnaH)] : (5.61)

Note that if gH and �H were independent, as in the GUT case, we would have one more degree

of freedom and we could not uniquely determine t2; t3; gH ;�H in terms of dY ; d2; d3. Related to this

is an alternative, but equivalent, method of solution to that employed above. We could treat �H
and gH as independent and solve (5.20,5.21) keeping t3 as the extra free parameter. Then solutions

to (5.20,5.21) would have �H = �H(t3) and gH = gH(t3). We could then determine the range of

t3 which allow the fourth constraint (5.18) to be satis�ed to within, say, 10%. Instead we impose

(5.18) from the start and address uncertainty of �10% with the parameter �. The results are of

course the same by either method.

In the case of �SUSY = mZ , we �nd

�2 = (2:25 � 0:07 � 0:006 � 0:09) � 1013 GeV;

�3 = (5� 0:1� 3� 1)� 106 GeV;

gH = 0:995 � 0:0004 � 0:0001 � 0:003;

�H = (5:1 � 0:002 � 0:0005 � 0:6) � 1017 GeV: (5.62)

The �rst two uncertainties for each quantity give the modi�ed estimates if sin2 �W (mZ) and

��13 (mZ) are taken at the ends of the 1� ranges given in (5.25) and (5.27) respectively. Upper

signs in (5.62) correspond to the upper limits of the 1� ranges; asymmetric uncertainties (due to

logarithms) have been rounded up to the larger of the two. The third uncertainty gives the modi-

�ed estimates if the \fudge parameter" � in (5.56) is taken at the ends of the range 0:9 � � � 1:1.

Again, the upper signs in (5.62) correspond to the upper limit of the range for �. Sensitivities are

logical: the exoquark scale �3 is most sensitive to �
�1
3 (mZ), while the sensitivity to sin2 �W (mZ)
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is below signi�cance. Only the exolepton scale �2 is has signi�cant sensitivity to sin2 �W (mZ);

�2; �H and gH , quantities more closely related to the high scale physics, are sensitive the high

scale uncertainty �. For the case of �SUSY = 1 TeV, we �nd

�2 = (8:4� 0:3� 0:02 � 0:4) � 1012 GeV;

�3 = (7� 0:1 � 4� 1)� 105 GeV;

gH = 0:972 � 0:0003 � 0:0001 � 0:003;

�H = (5:0� 0:002 � 0:0004 � 0:5) � 1017 GeV: (5.63)

We next address concerns over �ne-tuning in the uni�cation scenario considered here. Ghilencea

and Ross have recently argued that a realistic string model should not disturb the \signi�cance of the

prediction for the gauge couplings" which occurs in the MSSM [79]. They note that for reasonable

values of �SUSY, the portion of the �3(mZ) versus sin
2 �W (mZ) plane allowed by conventional MSSM

uni�cation is a very small strip. We can rewrite Eq. (5.60) as an implicit equation d3 = d3(dY ; d2; t3),

so that for �xed value of the exoquark scale, and thereby t3, we can predict �3(mZ) as a function

of sin2 �W (mZ). In Figure II we show our results for values of �3 which step by a factor of four; we

assume �SUSY = 1 TeV for these (solid) curves. For comparison we also show the MSSM uni�cation

predictions (dashed) with �SUSY stepping by factors of four; in the MSSM case we take kY = 5=3

and assume threshold corrections

�MSSM
a � �conv

a +�HL
a +�light

a ; a = Y; 2; 3; (5.64)

where each of the quantities on the right-hand side are assumed as above. We also show with error

bars the experimental values (5.25). The experimental error bars de�ne the major and minor axes

of an \error ellipse." In any give direction, the distance from the center of this ellipse to its edge

gives a measure which is independent of how we scale the axes of the graph. We compare the

widths of strips to those of the MSSM in these units. It can be seen that the sensitivity to �3 is

only a factor of approximately three greater than the sensitivity to �SUSY in the MSSM. Roughly

speaking, the tuning is not much worse than in the MSSM. Another way to see that the tuning

is not \�ne" is that deviations of up to roughly 60% in �3 from the central value given in (5.63)

can be accommodated by the uncertainty in ��13 (mZ). It is also interesting to note that setting

the scale �3 is equivalent to predicting ��13 (mZ), since the (solid) curves in Figure II are nearly

horizontal; this is reected in that fact that uncertainty in sin2 �W (mZ) had no appreciable e�ects

on the estimates of �3 in Eqs. (5.62,5.63).

In Figure III we present a similar analysis for �2, the exolepton scale. We �x t2 and solve

Eqs. (5.57-5.59) numerically eliminating t3 and aH to obtain d3 = d3(dY ; d2; t2). For a given value

of t2 we obtain a curve for �3(mZ) as a function of sin2 �W (mZ); we take �SUSY = 1 TeV. The

sensitivity to the exolepton scale is much higher, so we only step by �10% from �2 = 8:4 � 1012

GeV, the approximate central value of (5.63). We compare the widths of the strips to those of

the MSSM uni�cation as describe above. It can be seen that they are roughly three times wider,

implying that a 10% variation of �3 in the string uni�cation scenario studied here is on a par with

a 1200% variation of �SUSY in the MSSM uni�cation scenario. That is, sensitivity to the exolepton

scale is roughly 120 times worse than the �SUSY sensitivity of the MSSM. From (5.63) we note that

deviations of up to 3.5% for �2 from the central value can be accommodated by the uncertainty
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Figure II: Predicted Z scale values per the string uni�cation scenario (solid), for values of �3

stepping by factors of four, with �SUSY = 1 TeV. For comparison, the MSSM uni�cation prediction
is shown (dashed), with �SUSY stepping by factors of four. Experimental values are show with error
bars.
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in sin2 �W (mZ). Although this tuning is \�ne," it is not horrendous. The vertical (solid) curves in

Figure III demonstrate that choosing �2 is essentially equivalent to predicting sin
2 �W (mZ); this is

reected in (5.63) by the fact that �2 has no signi�cant sensitivity to the uncertainty in �
�1
3 (mZ).

To summarize, relative to the tuning of superpartner thresholds in the MSSM uni�cation sce-

nario, the the exoquark scale is not �nely-tuned, but the exolepton scale is �nely-tuned; however,

the �ne-tuning of the exolepton scale is not astronomical and is perhaps acceptable. If one is pre-

pared to accept a tuning 120 times worse than the tuning of �SUSY in the MSSM, then one still must

explain why the exotic scales have the order of magnitudes that they do. Presumably, this would

be determined by a detailed study of the at directions which produce Xiggs vevs and the selection

rules which restrict couplings in the e�ective theory. If the leading couplings giving exoquarks mass

were of high enough dimension, a natural explanation of the low exoquark scale may be possible;

the exolepton scale may be easier to explain because it is near the condensation scale.

Using our results for the scales �2;3, we can extract the range of exotic thresholds corrections

�exotic
a which are required:

9 <� �exotic
Y

<� 10; 120 <� �exotic
2

<� 130; 150 <� �exotic
3

<� 160: (5.65)

Comparing to (5.51,5.52), it can be seen that the exotic threshold corrections for ��12 and ��13
are quite large compared to other e�ects; they represent roughly 35% and 150% corrections to

4���12 and 4���13 respectively! However, the hypercharge correction is fairly modest (0.8%). (To

a good approximation, we could have neglected the �0
a of Eq. (5.50) and solved for the order of

magnitude of the exotic threshold corrections.) This can be traced to the fact that the exoquarks

and exoleptons which we have introduced at �3 and �2 have very small hypercharges. This is

precisely what is needed to overcome the nonstandard hypercharge normalization. It can be seen

from (5.20) that as kY is increased above its standard value, the prediction for ��1H will tend to

decrease, all other quantities being held constant and ignoring the constraints (5.18,5.21). We can

correct for this tendancy by making �2 and �3 signi�cantly larger than what is typical in the

MSSM, so long as we do not greatly change �Y . This is possible because we have exoquarks and

exoleptons with very small hypercharge.

The bizarre hypercharges of the exotic particles lead to fractionally charged particles; the most

problematic are the exoquarks, given the rather low value of �3. Thermal production of exoquarks

or exoleptons at an early stage of the universe would violate relic abundance bounds on fractionally

charged particles (FECs) by several orders of magnitude, as discussed for example in Refs. [62,

80, 81]. Thus, viabilty of this uni�cation scenario requires ination, to dilute the abundances

of FECs, with a reheating temperature TR which is suÆciently low that the FECs will not be

appreciably produced following ination; such scenarios have been examined for example in free

fermionic models [80]. Chung, Kolb and Riotto [82] have recently pointed out that the dilution of

heavy particle abundances by ination imposes a much stronger limit than was initially imagined:

to avoid thermal production of heavy particles with GSM gauge quantum numbers, the masses of

these heavy particles must be greater than TR by a factor of roughly 103. Then to escape conict

with the relic density data for fractionally charged particles, we require ination with

TR <� 10�3�3
<� 5TeV : (5.66)

While inationary scenarios with such low reheating temperatures have certainly been proposed

51



Figure III: Predicted Z scale values per the string uni�cation scenario (solid), for values of �2

stepping by �10% from the best �t value, with �SUSY = 1 TeV. For comparison, the MSSM
uni�cation prediction is shown (dashed), with �SUSY stepping by factors of four. Experimental
values are show with error bars.
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(see for example Ref. [83]), it is not at all clear that such scenarios can be achieved in the present

context. We will not address this question here, leaving it to further investigation.

6 Conclusions

In this work we have made a systematic tabulation of detailed properties of all orbifold

models falling within the BSLA class de�ned in the Introduction; by so doing, we can legitimately

say what is \typical" in this class of models. We have determined the hidden sector gauge group

GH and matter representations charged under the nonabelian part of GH . These details are key to

predicting the low energy phenomenology which arises from supersymmetry breaking in a hidden

sector, such as in the e�ective theory of BGW. We have listed all of the patterns of irreps under

the nonabelian factors of G. Using these results, one can easily select a model from the BSLA
class which has the desired exotic matter. The tables of irreps also suggest topics for further study,

such as gauge mediation of hidden sector supersymmetry breaking from mixed representations of

the observable and hidden sector gauge groups. While such communications may be suppressed

by large masses, they are likely competitive with gravity mediation, which is suppressed by inverse

powers of the Planck mass.

For each model, we have given a number of quantities which are useful for phenomenological

studies. The FI terms in Table II allow one to determine the scale of initial gauge symmetry

breaking. An understanding of the details of how this occurs is important to the construction of

the low energy e�ective theory. Because many of the low energy e�ective operators have coeÆcients

which at leading order depend on large powers of the Xiggs vevs, O(1) variations in the FI term

can be greatly enhanced. For this reason, an accurate determination of the FI term is of practical

interest. Table III gives the Green-Schwarz coeÆcient bGS for each model, which plays a prominent

role in formulae in the e�ective theory of BGW|for example, the T-moduli mass formula (3.14).

In particular, we found that this implies a problem of too light T-moduli masses in the BSLA class.

The minimum hypercharge normalization kY (consistent with accommodation of the MSSM and

at least SU(3)0 surviving in the hidden sector to provide for gaugino condensation) was determined

for each model. If one is determined to obtain the standard normalization kY = 5=3, Table V

spares e�ort on fruitless models where this is not possible|over half of the 175 studied here. We

are able to conclude that \extended" hypercharge embeddings allow for kY < 5=3 in some of the

models, similar to what was found for free fermionic models in Ref. [64]. However, it is not possible

to obtain small enough kY , in the range of 1:4 to 1:5, to achieve string scale uni�cation with only

the MSSM �eld content|a string uni�cation scenario studied in Refs. [71, 59] and reviewed in [61].

All of the quantities tabulated here are necessary to detailed model-building in the e�ective

supergravity theory and have implications for soft terms in the MSSM and the uni�cation of

running gauge couplings. To our knowledge, this is the �rst complete and systematic survey of

three generation standard-like bosonic heterotic orbifold models performed at this level of detail.

By organizing the models into twenty patterns of irreps and enumerating various other properties

which are universal to models within a given pattern, we allow the phenomenologist to quickly select

a subset of the models within the BSLA class which have the desired properties. It is an interesting

result that so many of the features of the various models within an irrep pattern are universal.

Cross-referencing with the embeddings enumerated in [16] using Table XIII, one can employ the
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recipes provided in Section 2 to quickly generate the matter spectra for a given model, without

a detailed understanding of the underlying theory; alternatively, full tables of all 175 models are

available from the author upon request. It is hoped that through these e�orts the BSLA class

of string-derived models has been rendered more readily accessible for further study to a wider

audience.

The unusual features of string-derived models, charge fractionalization and nonstandard hyper-

charge normalization, have been discussed in the simplest of terms. We have endeavored to make

clear as is possible how it is that states occur which would not be discovered through straight-

forward dimensional reduction and irrep decompositions of the original ten-dimensional E8 � E8

theory. We have discussed at length the problems which these features present for the construc-

tion of a phenomenologically viable model. We have described the size of Xiggs vevs in general

terms, and have found that large T-moduli vevs would seem to spoil perturbativity of the � model

expansion of the e�ective theory.

In an example model where nonstandard hypercharge normalization cannot be avoided, we

have described the lengths to which one must go in order to achieve uni�cation at the string scale.

Exotic matter states with very small hypercharges were introduced at intermediate scales to obtain

agreement with Z scale data for the gauge couplings. The exoquark scale was found to be rather

low. The exotic hypercharges of the exotic matter in turn implied a low reheating temperature

to avoid problems with FEC relic abundance constraints. Fine-tuning of the intermediate scales

was examined and was shown to be, in our opinion, rather mild. However, we did not study at

directions and superpotential couplings in the example model, and for this reason the intermediate

scales and intermediate �eld content remain to be justi�ed.

To defend the uni�cation scenario presented in Section 5.2, one must be willing to take the

position that the apparent uni�cation at roughly 2 � 1016 GeV in the MSSM with kY = 5=3 is

purely accidental; we �nd this point of view diÆcult to accept. On the other hand, the uni�cation

scenario we have studied serves as an illustration of how ugly things really are when one attempts

to re�ne many of the models into a realistic theory. Though we have studied only one example, it

can be seen from Table V that a good fraction of the BSLA class models have kY > 5=3 and the

uni�cation constraint in these models leads inevitably to the contortions exhibited in our example.

In conclusion, the more promising models will be those with kY � 5=3. One might invoke

M-theory [84] to explain uni�cation at 2 � 1016, as was done in Refs. [6]; or, one might introduce

many exotics at a intermediate scale with a \just so" arrangement of irreps and charges in the

hope that with enough exotics the intermediate scale would quite near the uni�cation scale of the

MSSM and the apparent approximate uni�cation at 2 � 1016 would not be an accident. In either

case, the classi�cation performed here, together with the identi�cation of equivalences performed

in Ref. [20, 24], has moved the e�ort further along for the BSLA class and has narrowed down the

number of \attractive models."
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Appendices

A Cancellation of the Modular Anomaly

For the Z3 orbifold, SU(3; 3;Z) reparameterizations of the nine T-moduli T
ij are symmetries

[85] of the underlying perturbative string theory, at least to one loop in string perturbation theory

[86, 47]. These are referred to as target space modular transformations or duality transformations

of the T-moduli. Most commonly, projective SL(2;Z) subgroups acting on the diagonal moduli are

studied:

T i ! aiT i � ibi

iciT i + di
; aidi � bici = 1; 8 i = 1; 3; 5; (A.1)

with ai; bi; ci; di all integers. The indices on these integers indicate that each of the three T i may

transform with its own set. In addition to transformations on the T-moduli, accompanying T-

dependent reparameterizations of chiral matter super�elds must be made:

�A !
P

BM
A
B�

BQ
i=1;3;5(ic

iT i + di)q
A
i

: (A.2)

Here, qBi is the modular weight of the �eld �B; these quantities were given in Section 3. The matrix

MA
B is identity for untwisted �elds while it mixes subsets of twisted �elds with the same modular

weight [87] in a way which depends on the parameters ai; bi; ci; di.

Transformations (A.1,A.2) are symmetries of the e�ective supergravity action at the classical

level|isometries of the nonlinear � model. However, at the quantum level there is a � model

anomaly [88] associated with the duality tranformations, as originally pointed in Refs. [89, 90]. To

study thismodular anomaly, one calculates the quantum corrections to the supergravity lagrangian,

in particular triangle diagrams involving the composite � model connections of T-moduli to other

�elds at one vertex and gauge boson currents at the other two vertices. Various calculations of the

modular anomaly have been performed. Most often, supergravity interactions have been studied at

the component level and then the anomaly written as a globally supersymmetric superspace integral,

which is an approximation to the true supergravity anomaly [89, 90, 91, 92]. The supergravity one

loop e�ective lagrangian and its transformation properties has been studied in great detail by

Gaillard and collaborators, using Pauli-Villars regularization techniques [93]. These calculations

were recently used to infer a locally supersymmetric superspace expression for the anomaly at one

loop [94]. Equivalent expressions have also been obtained in Ref. [95]. Keeping only the leading

term important to the present analysis, the quantum part of the one loop e�ective supergravity

lagrangian transforms under (A.1) as

ÆLQ =
X
a;j

�ja
64�2

Z
d4�

E

R
ln(icjT j + dj)

X
i

(W�W�)
i
a + h.c. (A.3)

55



The expression on the right-hand side is a superspace integral in the K�ahler U(1) formulation of

supergravity [96]. The quantity E is the superdeterminant of the vielbein; it generalizes the tensor

density e =
p
g which appears in the Einstein-Hilbert action to a super�eld. The super�eld R is

chiral and has as its lowest component the scalar auxilliary �eld of supergravity. The chiral spinor

super�eld Wi
�;a is the super�eld-strength corresponding to the generator T ia of the factor Ga of

the gauge group G and has as its lowest component the gaugino �i�;a. The coeÆcient �
j
a reects

particles in the triangle loop which contribute to the anomalous transformation, and is given by

[92]

�ja = �C(Ga) +
X
A

(1� 2qAj )Xa(R
A); (A.4)

where the sum runs over matter irreps RA of Ga and q
A
j is the modular weight appearing in (A.2).

Since the transformations (A.1,A.2) are known to be anomaly free in the underlying four-

dimensional string theory, we must add e�ective terms to cancel the anomaly. One possible can-

cellation is from the shift in the T-moduli dependent threshold corrections alluded to in Sections 3

and 5.2. As mentioned there, however, such threshold corrections are absent in Z3 orbifold com-

pacti�cations [47]. Thus, the entire modular anomaly given by (A.3) must be canceled by the

Green-Schwarz mechanism. That is, we include in the e�ective supergravity lagrangian a term

which will have an anomalous transformation under (A.1,A.2), just such as to cancel (A.3). The

overall coeÆcient bGS of the Green-Schwarz term is determined by this matching.

We now describe this term in the BGW e�ective theory. However, we note that in expressions

below, we use a slightly di�erent normalization for the Green-Schwarz coeÆcient bGS than BGW;

rather, we adopt the more common convention of Refs. [97, 98]. In the BGW notation, the Green-

Schwarz coeÆcient is written as b, which is related to bGS by the equation b = �bGS=24�2. In

addition, in our formulae we do not use the BGW conventions for the � function coeÆcients of the

gauge groups. The two conventions are related by bBGWa = �bherea =24�2.

In addition to the supergravity multiplet, gauge multiplets, and matter multiplets, string theory

predicts the existence of other supermultiplets of dynamic states. One particularly important set

of �elds is the following: a real scalar �eld ` called the dilaton , an antisymmetric tensor Bmn whose

�eld strength is dual to the universal axion, and a Majorana spinor ' which is referred to as the

dilatino. This is on-shell content of the super�eld L, which is a linear multiplet. It satis�es the

modi�ed linearity condition [96]

( �D2 + 8R)L = �
X
a;i

(W�W�)
i
a: (A.5)

Following BGW, we write the Green-Schwarz counterterm for the modular anomaly as

LGS =
bGS

24�2

Z
d4� EL

X
j

ln(T j + �T j): (A.6)

Using (A.1), integration by parts in superspace [99], chirality of T j and the modi�ed linearity

condition (A.5),

ÆLGS =
�bGS
24�2

Z
d4�EL

X
j

ln(icjT j + dj) + h.c.
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=
bGS

8 � 24�2
Z
d4�

E

R
( �D2 + 8R)[L

X
j

ln(icjT j + dj)] + h.c.

=
�bGS
192�2

X
j;a

Z
d4�

E

R
ln(icjT j + dj)

X
i

(W�W�)
i
a + h.c. (A.7)

Comparing to (A.3), it is easy to see that in the present context (i.e., in the absence of T-moduli

dependent string threshold corrections),

bGS = 3�ja 8 a; j: (A.8)

A generic spectrum of massless states which is free of chiral gauge anomalies will not satisfy (A.8),

since it requires that we get the same result, bGS, for each factor Ga in the gauge group G. Thus,

(A.8) is a highly nontrivial constraint on the matter spectrum. This was exploited by Ib�a~nez and

L�ust to draw a number of phenomenological conclusions for Z3 orbifold models [97].

As discussed in Section 2, untwisted states come in families of three; we make explicit the

family index i = 1; 3; 5 by taking A ! (�; i) for untwisted �elds, so that � denotes the species of

untwisted �eld. For the twisted �elds we take A! � to distinguish them, but do not separate out

the family label. For nonabelian factors Ga in the models considered here, a nice simpli�cation

can be made. As mentioned in Section 3, none of the pseudo-massless twisted �elds which are in

nontrivial representations of Ga are oscillator states. Consequently, it follows from the discussion

of Section 3 that they all have modular weights q�j = 2=3. Also from Section 3, we have for the

untwisted states q
(�;i)
j = Æij . With these facts, it is easy to show that Eqs. (A.4,A.8) can be rewritten

bGS = �3Ca +
X

(�;i)2untw

Xa(R
(�;i))�

X
�2tw

Xa(R
�) = btota � 2

X
�2tw

Xa(R
�); (A.9)

where the last equality follows from (5.22), only now it is the total � function coeÆcient which

appears, since all pseudo-massless states contribute. In the absence of twisted states in nontrivial

irreps of Ga, the last term on the right-hand side vanishes. This occurs for SO(10) in Patterns

1.1 and 1.2. But then for a Ga with only trivial irreps in the twisted sector bGS = btota . This is

the source of the (approximately vanishing) T-moduli mass problem discussed in Section 3 and

Ref. [15].

As an example of the surprising matching of (A.9) for di�erent Ga, we examine Pattern 1.1.

The SO(10) factor of G has no nontrivial matter representations, as can be seen from Table VIII,

which gives

bGS = btot10 = �3C(SO(10)) = �24: (A.10)

For the SU(3) factor, we have 15(3 + �3; 1; 1) beyond the MSSM which gives Æb3 = btot3 � b3 = 15,

and consequently btot3 = 12. Comparison of Table VIII to Table XII shows that the twisted sector

irreps are 15(3; 1; 1) + 21(�3; 1; 1), which gives

bGS = btot3 � 2
X
�2tw

X3(R
�) = 12� 36 = �24: (A.11)

Finally, the SU(2) factor has 40(1; 2; 1) beyond the MSSM, so that Æb2 = btot2 � b2 = 20 and

btot2 = 21. Again comparing Table VIII to Table XII, we �nd that the SU(2) charged twisted
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matter is 45(1; 2; 1) and so

bGS = btot2 � 2
X
�2tw

X2(R
�) = 21� 45 = �24: (A.12)

It is reassuring that each group SO(10); SU(3) and SU(2) gives the same answer for bGS, as they

must for universal cancellation of the modular anomaly [97]. As a nontrivial check on our results, we

have veri�ed that this matching holds among the nonabelian factors in each of the twenty patterns.
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B Tables

Pattern SU(3)� SU(2)� SO(10) Irreps

1.1 3[(3; 2; 1) + 5(3; 1; 1) + 7(�3; 1; 1) + 15(1; 2; 1) + 48(1; 1; 1)0 + 15(1; 1; 1)1 ]

1.2 3[(3; 2; 1) + 4(3; 1; 1) + 6(�3; 1; 1) + 13(1; 2; 1) + (1; 1; 16) + 48(1; 1; 1)0

+9(1; 1; 1)1]

Table VIII: Patterns of irreps in Case 1 models.

Pattern SU(3) � SU(2)� SU(5)� SU(2) Irreps

2.1 3[(3; 2; 1; 1) + 3(3; 1; 1; 1) + 5(�3; 1; 1; 1) + 9(1; 2; 1; 1) + (1; 1; 5; 1)

+(1; 1; �5; 1) + 6(1; 1; 1; 2) + (1; 2; 1; 2) + 34(1; 1; 1; 1)0 + 9(1; 1; 1; 1)1 ]

2.2 3[(3; 2; 1; 1) + 3(3; 1; 1; 1) + 5(�3; 1; 1; 1) + 9(1; 2; 1; 1) + (1; 1; 5; 1)

+(1; 1; �5; 1) + 6(1; 1; 1; 2) + (1; 2; 1; 2) + 37(1; 1; 1; 1)0 + 6(1; 1; 1; 1)1 ]

2.3 3[(3; 2; 1; 1) + 3(3; 1; 1; 1) + 5(�3; 1; 1; 1) + 11(1; 2; 1; 1) + (1; 1; 5; 1)

+(1; 1; �5; 1) + 8(1; 1; 1; 2) + 33(1; 1; 1; 1)0 + 6(1; 1; 1; 1)1 ]

2.4 3[(3; 2; 1; 1) + 2(3; 1; 1; 1) + 4(�3; 1; 1; 1) + 9(1; 2; 1; 1) + (1; 1; 5; 1)

+2(1; 1; �5; 1) + (1; 1; 10; 1) + 6(1; 1; 1; 2) + 32(1; 1; 1; 1)0 + 6(1; 1; 1; 1)1 ]

2.5 3[(3; 2; 1; 1) + 2(3; 1; 1; 1) + 4(�3; 1; 1; 1) + 7(1; 2; 1; 1) + (1; 1; 5; 1)

+2(1; 1; �5; 1) + (1; 1; 10; 1) + 4(1; 1; 1; 2) + (1; 2; 1; 2) + 36(1; 1; 1; 1)0

+6(1; 1; 1; 1)1 ]

2.6 3[(3; 2; 1; 1) + (3; 1; 1; 1) + 3(�3; 1; 1; 1) + 5(1; 2; 1; 1) + (1; 1; 5; 1)

+3(1; 1; �5; 1) + (1; 1; 10; 2) + 10(1; 1; 1; 2) + (1; 2; 1; 2) + 25(1; 1; 1; 1)0 ]

Table IX: Patterns of irreps in Case 2 models.
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Pattern SU(3)� SU(2)� SU(4) � SU(2)2 Irreps

3.1 3[(3; 2; 1; 1; 1) + 2(3; 1; 1; 1; 1) + 4(�3; 1; 1; 1; 1) + 7(1; 2; 1; 1; 1) + 2(1; 1; 4; 1; 1)

+2(1; 1; �4; 1; 1) + 6(1; 1; 1; 2; 1) + 4(1; 1; 1; 1; 2) + (1; 2; 1; 1; 2) + 27(1; 1; 1; 1; 1)0

+6(1; 1; 1; 1; 1)1 ]

3.2 3[(3; 2; 1; 1; 1) + 2(3; 1; 1; 1; 1) + 4(�3; 1; 1; 1; 1) + 7(1; 2; 1; 1; 1) + 2(1; 1; �4; 1; 1)

+8(1; 1; 1; 2; 1) + 4(1; 1; 1; 1; 2) + (1; 1; 4; 2; 1) + (1; 2; 1; 1; 2) + 26(1; 1; 1; 1; 1)0

+3(1; 1; 1; 1; 1)1 ]

3.3 3[(3; 2; 1; 1; 1) + 2(3; 1; 1; 1; 1) + 4(�3; 1; 1; 1; 1) + 7(1; 2; 1; 1; 1) + 2(1; 1; �4; 1; 1)

+6(1; 1; 1; 2; 1) + 6(1; 1; 1; 1; 2) + (1; 1; 4; 2; 1) + (1; 2; 1; 2; 1) + 26(1; 1; 1; 1; 1)0

+3(1; 1; 1; 1; 1)1 ]

3.4 3[(3; 2; 1; 1; 1) + (3; 1; 1; 1; 1) + 3(�3; 1; 1; 1; 1) + 5(1; 2; 1; 1; 1) + 2(1; 1; 4; 1; 1)

+2(1; 1; �4; 1; 1) + 8(1; 1; 1; 2; 1) + 4(1; 1; 1; 1; 2) + (1; 1; 6; 2; 1) + (1; 2; 1; 2; 1)

+24(1; 1; 1; 1; 1)0 + 3(1; 1; 1; 1; 1)1 ]

Table X: Patterns of irreps in Case 3 models.
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Pattern SU(3)� SU(2)� SU(3) � SU(2)2 Irreps

4.1 3[(3; 2; 1; 1; 1) + 2(3; 1; 1; 1; 1) + 4(�3; 1; 1; 1; 1) + 9(1; 2; 1; 1; 1) + (1; 1; 3; 1; 1)

+(1; 1; �3; 1; 1) + 6(1; 1; 1; 2; 1) + 6(1; 1; 1; 1; 2) + 30(1; 1; 1; 1; 1)0 + 3(1; 1; 1; 1; 1)1 ]

4.2 3[(3; 2; 1; 1; 1) + 2(3; 1; 1; 1; 1) + 4(�3; 1; 1; 1; 1) + 7(1; 2; 1; 1; 1) + (1; 1; 3; 1; 1)

+(1; 1; �3; 1; 1) + 4(1; 1; 1; 2; 1) + 6(1; 1; 1; 1; 2) + (1; 2; 1; 2; 1) + 34(1; 1; 1; 1; 1)0

+3(1; 1; 1; 1; 1)1 ]

4.3 3[(3; 2; 1; 1; 1) + (3; 1; 1; 1; 1) + 3(�3; 1; 1; 1; 1) + 7(1; 2; 1; 1; 1) + 3(1; 1; 3; 1; 1)

+3(1; 1; �3; 1; 1) + 4(1; 1; 1; 2; 1) + 4(1; 1; 1; 1; 2) + 36(1; 1; 1; 1; 1)0

+3(1; 1; 1; 1; 1)1 ]

4.4 3[(3; 2; 1; 1; 1) + (3; 1; 1; 1; 1) + 3(�3; 1; 1; 1; 1) + 7(1; 2; 1; 1; 1) + (1; 1; 3; 1; 1)

+3(1; 1; �3; 1; 1) + 4(1; 1; 1; 2; 1) + 7(1; 1; 1; 1; 2) + (1; 1; 3; 1; 2) + 30(1; 1; 1; 1; 1)0

+3(1; 1; 1; 1; 1)1 ]

4.5 3[(3; 2; 1; 1; 1) + (3; 1; 1; 1; 1) + 3(�3; 1; 1; 1; 1) + 7(1; 2; 1; 1; 1) + (1; 1; 3; 1; 1)

+3(1; 1; �3; 1; 1) + 4(1; 1; 1; 2; 1) + 7(1; 1; 1; 1; 2) + (1; 1; 3; 1; 2) + 33(1; 1; 1; 1; 1)0 ]

4.6 3[(3; 2; 1; 1; 1) + (3; 1; 1; 1; 1) + 3(�3; 1; 1; 1; 1) + 5(1; 2; 1; 1; 1) + (1; 1; 3; 1; 1)

+3(1; 1; �3; 1; 1) + 4(1; 1; 1; 2; 1) + 5(1; 1; 1; 1; 2) + (1; 1; 3; 1; 2) + (1; 2; 1; 1; 2)

+34(1; 1; 1; 1; 1)0 + 3(1; 1; 1; 1; 1)1 ]

4.7 3[(3; 2; 1; 1; 1) + (3; 1; 1; 1; 1) + 3(�3; 1; 1; 1; 1) + 5(1; 2; 1; 1; 1) + 3(1; 1; 3; 1; 1)

+(1; 1; �3; 1; 1) + 4(1; 1; 1; 2; 1) + 5(1; 1; 1; 1; 2) + (1; 2; 1; 1; 2) + (1; 1; �3; 1; 2)

+37(1; 1; 1; 1; 1)0 ]

4.8 3[(3; 2; 1; 1; 1) + 2(�3; 1; 1; 1; 1) + 3(1; 2; 1; 1; 1) + (1; 1; 3; 1; 1) + 5(1; 1; �3; 1; 1)

+8(1; 1; 1; 2; 1) + 6(1; 1; 1; 1; 2) + (1; 2; 1; 1; 2) + (1; 1; 3; 2; 2) + 25(1; 1; 1; 1; 1)0 ]

Table XI: Patterns of irreps in Case 4 models.
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Patterns Untwisted Irreps

1.1 3[(3; 2; 1) + 3(1; 1; 1)0 ]

1.2 3[(3; 2; 1) + (�3; 1; 1) + (1; 2; 1) + (1; 1; 16)]

2.1 3[(3; 2; 1; 1) + 3(1; 1; 1; 1)0 ]

2.2, 2.3 3[(3; 2; 1; 1) + (�3; 1; 1; 1) + (1; 2; 1; 1) + (1; 1; 5; 1) + (1; 1; 1; 2)]

2.4, 2.5 3[(3; 2; 1; 1) + (1; 1; 10; 1) + 2(1; 1; 1; 1)0 ]

2.6 3[(3; 2; 1; 1) + (�3; 1; 1; 1) + (1; 2; 1; 1) + (1; 1; 5; 1) + (1; 1; 10; 2)]

3.1 3[(3; 2; 1; 1; 1) + (1; 1; 4; 1; 1) + 2(1; 1; 1; 1; 1)0 ]

3.2, 3.3 3[(3; 2; 1; 1; 1) + (�3; 1; 1; 1; 1) + (1; 2; 1; 1; 1) + (1; 1; 1; 1; 2) + (1; 1; 4; 2; 1)]

3.4 3[(3; 2; 1; 1; 1) + (1; 1; 6; 2; 1) + 3(1; 1; 1; 1; 1)0 ]

4.1, 4.2 3[(3; 2; 1; 1; 1) + (�3; 1; 1; 1; 1) + (1; 2; 1; 1; 1) + (1; 1; 1; 2; 1) + (1; 1; 1; 1; 2)]

4.3 3[(3; 2; 1; 1; 1) + (1; 1; 3; 1; 1) + (1; 1; �3; 1; 1) + 3(1; 1; 1; 1; 1)0 ]

4.4, 4.6 3[(3; 2; 1; 1; 1) + (1; 1; 3; 1; 2) + 3(1; 1; 1; 1; 1)0 ]

4.5, 4.7 3[(3; 2; 1; 1; 1) + (�3; 1; 1; 1; 1) + (1; 2; 1; 1; 1) + (1; 1; �3; 1; 1) + (1; 1; 1; 2; 1)

+(1; 1; 1; 1; 2) + (1; 1; 3; 1; 2)]

4.8 3[(3; 2; 1; 1; 1) + (1; 1; 3; 1; 1) + (1; 1; 3; 2; 2) + 3(1; 1; 1; 1; 1)0 ]

Table XII: Irreps of the untwisted sectors for each pattern of total irreps.
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Pattern Models

1.1 1.1, 1.2, 1.3, 4.1, 4.2, 4.3, 8.1

1.2 2.1, 2.2, 2.3, 6.1, 6.2, 6.3, 9.1

2.1 1.4, 1.5, 1.11, 1.12, 4.4, 4.6, 4.9, 4.11, 8.2, 8.3

2.2 2.4, 2.5, 2.6, 2.7, 6.4, 6.6, 6.9, 6.11, 9.2, 11.3

2.3 2.9, 2.10, 2.12, 6.8, 6.10, 6.12, 9.3

2.4 1.6, 1.8, 1.10, 4.5, 4.8, 4.10, 10.2

2.5 1.7, 1.9, 4.7, 4.12, 10.1, 10.3

2.6 2.8, 2.11, 6.5, 6.7, 11.1, 11.2

3.1 1.14, 1.15, 1.16, 1.17, 4.13, 4.15, 4.16, 4.18, 10.4, 10.5, 10.6, 10.7

3.2 2.13, 2.14, 6.15, 6.17, 11.5

3.3 2.15, 2.16, 2.17, 2.18, 6.13, 6.14, 6.16, 6.18, 9.4, 11.4

3.4 1.13, 1.18, 4.14, 4.17, 8.4

4.1 2.19, 2.20, 2.21, 6.22, 6.23, 6.29, 11.16

4.2 2.22, 2.23, 2.27, 2.32, 6.24, 6.26, 6.30, 6.31, 9.5, 11.9, 11.11, 11.14

4.3 1.19, 1.32, 1.33, 4.20, 4.27, 4.31, 8.5

4.4 1.21, 1.22, 1.23, 1.25, 1.28, 1.29, 4.21, 4.24, 4.25, 4.28, 4.30, 4.33, 10.8, 10.11,

10.14

4.5 2.24, 2.25, 2.28, 2.29, 2.30, 2.31, 6.19, 6.20, 6.21, 6.27, 6.28, 6.32, 11.6, 11.7,

11.12, 11.13, 11.15

4.6 1.20, 1.24, 1.27, 1.30, 4.19, 4.22, 4.26, 4.29, 10.10, 10.12, 10.15, 10.16, 10.17

4.7 2.26, 2.33, 6.25, 6.33, 11.8, 11.10

4.8 1.26, 1.31, 4.23, 4.32, 10.9, 10.13

Table XIII: Irrep patterns versus the models enumerated in [24]. See explanation of model
labeling in Section 3.
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Table XIV: BSLA 6.5 Pseudo-Massless Spectrum

No. Irrep Q1 Q2 Q3 Q4 Q5 Q6 Q7 QX Z Y

1 (3; 2; 1; 1)U 1 6 �18 9 45 15 0 3 1=6 1=6

2 (1; 2; 1; 1)U 3 18 �54 27 �45 �15 0 �3 1=2 1=2

3 (�3; 1; 1; 1)U �4 �24 72 �36 0 0 0 0 �2=3 �2=3
4 (1; 1; 10; 2)U 0 0 0 0 �18 �6 0 3 0 0

5 (1; 1; 5; 1)U 0 0 0 0 36 12 0 �6 0 0

6 (1; 1; 1; 1)�1;�1 0 �20 �32 �31 �35 �23 0 1 �1 0

7 (1; 1; 1; 1)�1;�1 0 �35 13 17 25 �3 0 5 �1 2=5

8 (1; 1; 1; 1)�1;�1 0 10 16 �55 25 �3 0 5 �1 �2=5
9 (1; 1; 1; 1)�1;�1 0 10 �122 14 10 �8 0 4 �1 0

10 (�3; 1; 1; 1)�1;�1 2 7 25 11 �5 �13 0 3 �2=3 1=3

11 (1; 2; 1; 1)�1;�1 �3 7 25 11 �5 �13 0 3 �3=2 �1=2
12 (1; 1; 1; 2)�1;0 0 �5 61 �7 �5 �13 0 �4 �1 0

13 (1; 1; 1; 1)�1;0 0 �5 61 �7 �95 �9 0 1 �1 0

14 (1; 1; 1; 2)�1;0 0 �20 �32 �31 55 7 0 0 �1 0

15 (1; 1; 1; 1)�1;0 0 �20 �32 �31 �35 11 0 5 �1 0

16 (1; 1; 1; 2)�1;0 0 25 �29 38 40 2 0 �1 �1 0

17 (1; 1; 1; 1)�1;0 0 25 �29 38 �50 6 0 4 �1 0

18 (1; 1; 1; 2)�1;1 0 �5 61 �7 �5 21 0 0 �1 0

19 (1; 1; �5; 1)�1;1 0 �5 61 �7 49 5 0 1 �1 0

20 (1; 1; 1; 1)�1;1 0 �5 61 �7 �5 4 �3 5 �1 �1=5
21 (1; 1; 1; 1)�1;1 0 �5 61 �7 �5 4 3 5 �1 1=5

22 (1; 1; 1; 1)0;�1 2 �28 38 �19 �5 4 �1 5 0 2=5

23 (1; 1; 1; 1)0;�1 2 17 41 50 �20 �1 �1 4 0 2=5

24 (1; 1; 1; 1)0;�1 2 17 �97 �22 �20 �1 �1 4 0 0

25 (1; 2; 1; 1)0;�1 �1 14 50 �25 �35 �6 �1 3 �1=2 �1=2
26 (1; 1; 1; 1)0;�1 �4 �4 �34 17 �5 4 �1 5 �1 �3=5
27 (3; 1; 1; 1)0;�1 0 �10 �16 8 �50 �11 �1 2 �1=3 1=15

28 (1; 1; 1; 2)0;0 2 32 �4 2 10 9 �1 �1 0 0

29 (1; 1; 1; 1)0;0 2 32 �4 2 10 �8 2 4 0 1=5

30 (1; 2; 1; 2)0;0 �1 �16 2 �1 �5 4 �1 �2 �1=2 �1=10
31 (1; 2; 1; 1)0;0 �1 �16 2 �1 �5 �13 2 3 �1=2 1=10

32 (1; 1; �5; 1)0;1 2 2 �52 26 4 7 �1 0 0 2=5

33 (1; 1; 1; 2)0;1 2 2 �52 26 40 2 2 �1 0 3=5

34 (1; 1; 1; 1)0;1 2 2 �52 26 40 �15 �1 4 0 2=5

35 (1; 1; 1; 1)0;1 2 2 �52 26 �50 6 2 4 0 3=5
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Table XIV: BSLA 6.5 Pseudo-Massless Spectrum (Cont.)

No. Irrep Q1 Q2 Q3 Q4 Q5 Q6 Q7 QX Z Y

36 (1; 1; 1; 2)1;�1 �2 3 �9 �19 55 7 �2 0 0 �3=5
37 (1; 1; �5; 1)1;�1 �2 3 �9 �19 19 12 1 1 0 �2=5
38 (1; 1; 1; 1)1;�1 �2 3 �9 �19 �35 11 �2 5 0 �3=5
39 (1; 1; 1; 1)1;�1 �2 3 �9 �19 55 �10 1 5 0 �2=5
40 (1; 1; 1; 1)1;0 �2 �27 �57 5 �5 4 1 5 0 0

41 (1; 1; 1; 1)1;0 �2 18 84 5 �5 4 1 5 0 �2=5
42 (�3; 1; 1; 1)1;0 0 15 �45 �1 �35 �6 1 3 1=3 �1=15
43 (1; 1; 1; 1)1;0 4 �6 18 38 �20 �1 1 4 1 1

44 (1; 2; 1; 1)1;0 1 �9 27 �37 �35 �6 1 3 1=2 1=10

45 (1; 1; 1; 1)1;0 �2 �12 36 29 �65 �16 1 1 0 0

46 (1; 1; 1; 2)1;1 �2 �12 36 29 25 14 1 0 0 0

47 (1; 1; 1; 1)1;1 �2 �12 36 29 25 �3 �2 5 0 �1=5
48 (1; 1; 1; 2)1;1 4 9 �27 �10 10 9 1 �1 1 3=5

49 (1; 1; 1; 1)1;1 4 9 �27 �10 10 �8 �2 4 1 2=5

50 (1; 1; 1; 2)1;1 �2 3 �9 �19 �35 �6 1 �4 0 �2=5
51 (1; 1; 1; 1)1;1 �2 3 �9 �19 �35 �23 �2 1 0 �3=5
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